Skip to main content

Advertisement

Log in

Understanding materials microstructure and behavior at the mesoscale

  • Mesoscale Materials, Phenomena, and Functionality
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Taking the mesoscale to mean length and time scales at which a material’s behavior is too complex to be understood by construction from the atomistic scale, we focus on three-dimensional characterization and modeling of mesoscale responses of polycrystals to thermal and mechanical loading. Both elastic and plastic internal structural responses are now accessible via high-energy x-ray probes. The combination of diffraction experiments and computed tomography, for example, is yielding new insights into how void formation correlates with microstructural features such as grain boundaries and higher-order junctions. The resulting large, combined data sets allow for validation of micromechanical and thermal simulations. As detectors improve in resolution, quantum efficiency, and speed of readout, data rates and data volumes present computational challenges. Spatial resolutions approach one micrometer, while data sets span a cubic millimeter. Examples are given of applications to tensile deformation of copper, grain growth in nickel and titanium, and fatigue cracks in superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Basic Energy Sciences Advisory Committee Subcommittee on Mesoscale Science, “From Quanta to the Continuum: Opportunities for Mesoscale Science,” US Department of Energy (September 2012); http://science.energy.gov/~/media/bes/pdf/reports/files/OFMS_rpt.pdf (accessed December 2014).

  2. J. Li, C.Z. Wang, J.P. Chang, W. Cai, V.V. Bulatov, K.M. Ho, S. Yip, Phys. Rev. B Condens. Matter 10, 104113 (2004).

    Article  Google Scholar 

  3. L. Kubin, B. Devincre, T. Hoc, Mater. Sci. Eng. A 483–484, 19 (2008).

    Article  Google Scholar 

  4. H.J. Bunge, Texture Analysis in Materials Science (Butterworths, London, UK, 1982).

    Google Scholar 

  5. C. Kords, D.D. Tjahjanto, M. Diehl, D. Raabe, F. Roters, P. Eisenlohr, Procedia IUTAM 2, 3 (2012).

    Google Scholar 

  6. P.R. Dawson, D.E. Boyce, R. Rogge, Comput. Model. Eng. Sci. 10, 123 (2005).

    Google Scholar 

  7. S. Subedi, R. Pokharel, A.D. Rollett, Mater. Sci. Eng. A 638, 348 (2015).

    Article  CAS  Google Scholar 

  8. R.A. Lebensohn, J.P. Escobedo, J.F. Bingert, Acta Mater. 61, 6918 (2013).

    Article  CAS  Google Scholar 

  9. C.A. Stein, A. Cerrone, S.-B. Lee, T. Ozturk, P. Kenesei, H. Tucker, R. Pokharel, C. Hefferan, J. Lind, R.M. Suter, A.R. Ingraffea, A.D. Rollett, Curr. Opin. Solid State Mater. Sci. 18, 244 (2014).

    Article  CAS  Google Scholar 

  10. V. Bulatov, W. Cai, Computer Simulations of Dislocations (Oxford University Press, Oxford, UK, 2006).

    Book  Google Scholar 

  11. L.P. Kubin, Dislocations, Mesoscale Simulations, and Plastic Flow (Oxford University Press, Oxford, UK, 2013).

    Book  Google Scholar 

  12. B. Derby, Acta Metall. Mater. 39, 955 (1991).

    Article  CAS  Google Scholar 

  13. Z.P. Luo, H.W. Zhang, N. Hansen, K. Lu, Acta Mater. 60, 1322 (2012).

    Article  CAS  Google Scholar 

  14. S. Xia, A. El-Azab, Model. Simul. Mater. Sci. Eng. 23, 055009 (2015).

    Article  Google Scholar 

  15. G.S. Liu, S.D. House, J. Kacher, M. Tanaka, K. Higashida, I.M. Robertson, Mater. Charact. 87, 1 (2014).

    Article  Google Scholar 

  16. W. Yang, B.C. Larson, G.M. Pharr, G.E. Ice, J.D. Budai, J.Z. Tischler, W.J. Liu, J. Mater. Res. 19, 66 (2004).

    Article  CAS  Google Scholar 

  17. B.C. Larson, W. Yang, G.E. Ice, J.D. Budai, J.Z. Tischler, Nature 415, 887 (2002).

    Article  CAS  Google Scholar 

  18. A. Ulvestad, A. Singer, J.N. Clark, H.M. Cho, J.W. Kim, R. Harder, J. Maser, Y.S. Meng, O.G. Shpyrko, Science 348, 1344 (2015).

    Article  CAS  Google Scholar 

  19. M de Koning, R.J. Kurtz, V.V. Bulatov, C.H. Henager, R.G. Hoagland, W. Cai, M. Nomura, J. Nucl. Mater. 323, 281 (2003).

    Article  Google Scholar 

  20. H.C. Huang, H. Van Swygenhoven, MRS Bull. 34, 160 (2009).

    Article  CAS  Google Scholar 

  21. S.J. Fensin, C. Brandl, E.K. Cerreta, G.T. Gray, T.C. Germann, S.M. Valone, JOM 65, 410 (2013).

    Article  CAS  Google Scholar 

  22. T.E. Buchheit, C.C. Battaile, C.R. Weinberger, E.A. Holm, JOM 63, 33 (2011).

    Article  CAS  Google Scholar 

  23. S.F. Li, J. Lind, C.M. Hefferan, R. Pokharel, U. Lienert, A.D. Rollett, R.M. Suter, J. Appl. Crystallogr. 45, 1098 (2012).

    Article  CAS  Google Scholar 

  24. J. Oddershede, S. Schmidt, H.F. Poulsen, H.O. Sorensen, J. Wright, W. Reimers, J. Appl. Crystallogr. 43, 539 (2010).

    Article  CAS  Google Scholar 

  25. Y.S. Choi, M.A. Groeber, P.A. Shade, T.J. Turner, J.C. Schuren, D.M. Dimiduk, M.D. Uchic, C. Woodward, A.D. Rollett, T.A. Parthasarathy, Metall. Mater. Trans. A 45, 6352 (2014).

    Article  CAS  Google Scholar 

  26. A.J. Beaudoin, M. Obstalecki, R. Storer, W. Tayon, J. Mach, P. Kenesei, U. Lienert, Model. Simul. Mater. Sci. Eng. 20, 024006 (2012).

    Article  Google Scholar 

  27. H. Lim, J.D. Carroll, C.C. Battaile, T.E. Buchheit, B.L. Boyce, C.R. Weinberger, Int. J. Plast. 60, 1 (2014).

    Article  CAS  Google Scholar 

  28. R. Pokharel, J. Lind, A.K. Kanjarala, R.A. Lebensohn, S.F. Li, P. Kenesei, R.M. Suter, A.D. Rollett, Annu. Rev. Condens. Matter Phys. 5, 317 (2014).

    Article  CAS  Google Scholar 

  29. J. Schuren, J. Lind, S.F. Li, J. Bernier, P. Shade, T.J. Turner, P. Kenesei, J. Almer, B. Blank, R.M. Suter, Curr. Opin. Condens. Matter Mater. Sci. 19, 234 (2015).

    Google Scholar 

  30. R.A. Lebensohn, Acta Mater. 49, 2723 (2001).

    Article  CAS  Google Scholar 

  31. B. Jakobsen, H.F. Poulsen, U. Lienert, J. Almer, S.D. Shastri, H.O. Sorensen, C. Gundlach, W. Pantleon, Science 312, 889 (2006).

    Article  CAS  Google Scholar 

  32. H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, I. Snigireva, A. Snigirev, H.F. Poulsen, Nat. Commun. 6, 6098 (2015).

    Article  CAS  Google Scholar 

  33. W.M. Garrison, A.L. Wojcieszynski, Mater. Sci. Eng. A 464, 321 (2007).

    Article  Google Scholar 

  34. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, Acta Mater. 57, 2592 (2009).

    Article  CAS  Google Scholar 

  35. M.D. Uchic, M.A. Groeber, A.D. Rollett, JOM 63, 25 (2011).

    Article  Google Scholar 

  36. S.F. Li, R.M. Suter, J. Appl. Crystallogr. 46, 512 (2013).

    Article  CAS  Google Scholar 

  37. W. Ludwig, P. Reischig, A. King, M. Herbig, E.M. Lauridsen, G. Johnson, T.J. Marrow, J.Y. Buffière, Rev. Sci. Instrum. 80, 033905 (2009).

    Article  CAS  Google Scholar 

  38. D.M. Saylor, A. Morawiec, G.S. Rohrer, J. Am. Ceram. Soc. 85, 3081 (2002).

    Article  CAS  Google Scholar 

  39. Y. Jin, B. Lin, M. Bernacki, G.S. Rohrer, A.D. Rollett, N. Bozzolo, Mater. Sci. Eng. A 597, 295 (2014).

    Article  CAS  Google Scholar 

  40. E.A. Holm, G.S. Rohrer, S.M. Foiles, A.D. Rollett, H.M. Miller, D.L. Olmsted, Acta Mater. 59, 5250 (2011).

    Article  CAS  Google Scholar 

  41. J. Gruber, D.C. George, A.P. Kuprat, G.S. Rohrer, A.D. Rollett, Scr. Mater. 53, 351 (2005).

    Article  CAS  Google Scholar 

  42. C.M. Hefferan, S.F. Li, J. Lind, U. Lienert, A.D. Rollett, P. Wynblatt, R.M. Suter, CMC—Comput. Mater. Con. 14, 209 (2009).

    Google Scholar 

  43. M. Bäurer, M. Syha, D. Weygand, Acta Mater. 61, 5664 (2013).

    Article  Google Scholar 

  44. I.M. McKenna, S.O. Poulsen, E.M. Lauridsen, W. Ludwig, P.W. Voorhees, Acta Mater. 78, 125 (2014).

    Article  Google Scholar 

  45. M.C. Demirel, A.P. Kuprat, D.C. George, A.D. Rollett, Phys. Rev. Lett. 90, 016106 (2003).

    Article  CAS  Google Scholar 

  46. D.L. Olmsted, E.A. Holm, S.M. Foiles, Acta Mater. 57, 3704 (2009).

    Article  CAS  Google Scholar 

  47. E.R. Homer, E.A. Holm, S.M Foiles, D.L. Olmsted, JOM 66, 114 (2014).

    Article  CAS  Google Scholar 

  48. M. Herbig, A. King, P. Reischig, H. Proudhon, E.M. Lauridsen, J. Marrow J.Y. Buffiere, W. Ludwig, Acta Mater. 59, 590 (2011).

    Article  CAS  Google Scholar 

  49. A.D. Spear, S.F. Li, J.F. Lind, R.M. Suter, A.R. Ingraffea, Acta Mater. 76, 413 (2014).

    Article  CAS  Google Scholar 

  50. J.C. Newman Jr., E.P. Phillips, R.A. Everett, Fatigue Analysis under Constant- and Variable-Amplitude Loading Using Small-Crack Theory (NASA, TM-1999–209329, 1999).

  51. H. Mughrabi, Mater. Sci. Eng. 33, 207 (1978).

    Article  CAS  Google Scholar 

  52. C. Déprés, M. Fivel, L. Tabourot, Scr. Mater. 58, 1086 (2008).

    Article  Google Scholar 

  53. C. Déprés, C.F. Robertson, M.C. Fivel, Philos. Mag. 86, 79 (2006).

    Article  Google Scholar 

  54. C. Déprés, G.V. Prasad Reddy, C.F. Robertson, M.C. Fivel, Philos. Mag. 94, 4115 (2014).

    Article  Google Scholar 

  55. W. Heinz, R. Pippan, G. Dehm, Mater. Sci. Eng. A 527, 7757 (2010).

    Article  Google Scholar 

  56. J.E. Bozek, J.D. Hochhalter, M.G. Veilleux, M. Liu, G. Heber, S.D. Sintay, A.D. Rollett, D.J. Littlewood, A.M. Maniatty, H. Weiland, R.J. Christ, J. Payne, G. Welsh, D.G. Harlow, P.A. Wawrzynek, A.R. Ingraffea, Model. Simul. Mater. Sci. Eng. 16, 065007 (2008).

    Article  Google Scholar 

  57. J.S. Miao, T.M. Pollock, J.W. Jones, Acta Mater. 57, 5964 (2009).

    Article  CAS  Google Scholar 

  58. C.S. Shin, C.F. Robertson, M.C. Fivel, Philos. Mag. 87, 3657 (2007).

    Article  CAS  Google Scholar 

  59. Y. Ro, S.R. Agnew, R.P. Gangloff, Metall. Mater. Trans. A 39A, 1449 (2008).

    Article  CAS  Google Scholar 

  60. X. Tan, “A New Method for Fracture Surface Studies: Combined HEDM Orientation Mapping and Absorption Tomography Applied to a Nickel Superalloy,” PhD thesis, Department of Physics, Carnegie Mellon University, Pittsburgh (2014).

    Google Scholar 

  61. A. Cerrone III, C.A. Stein, R. Pokharel, C. Hefferan, J. Lind, H. Tucker, R.M. Suter, A.D. Rollett, A.R. Ingraffea, Model. Simul. Mater. Sci. Eng. 23 035006 (2015).

    Article  Google Scholar 

  62. B. Lin, Y. Jin, C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, M. Bernacki, N. Bozzolo, A.D. Rollett, G.S. Rohrer, Acta Mater. 99, pp. 63–68 (2015).

    Article  CAS  Google Scholar 

  63. S. Van Boxel, S. Schmidt, W. Ludwig, Y. Zhang, D.J. Jensen, W. Pantleon Mater. Trans. 55, 1, pp. 128–136 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge many conversations about mesoscale science as it pertains to microstructure and mechanical properties, and especially, with members of the Basic Energy Sciences Advisory Committee. The nf-HEDM experimental capabilities illustrated here were developed at the Advanced Photon Source in collaboration with U. Lienert and P. Kenesei; analysis procedures and codes were developed at CMU by S.F. Li, J. Lind, C.M. Hefferan, and R.M.S. This work was supported, in part, by an AFOSR Discovery Challenge Thrust Grant #FA9550–10–1-0213 (characterization of fatigue cracks in super-alloys); in part by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award DESC0002001 (copper deformation); and in part by National Science Foundation Award DMR-1105173 (microstructural evolution in nickel during annealing).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rollett, A.D., Rohrer, G.S. & Suter, R.M. Understanding materials microstructure and behavior at the mesoscale. MRS Bulletin 40, 951–960 (2015). https://doi.org/10.1557/mrs.2015.262

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.262

Navigation