Skip to main content

Advertisement

Log in

Phase-engineered transition-metal dichalcogenides for energy and electronics

  • 2D layered transition-metal dichalcogenides
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) consist of over 40 compounds. Complex metal TMDs assume the 1T phase where the transition-metal atom coordination is octahedral. The 2H phase is stable in semiconducting TMDs where the coordination of metal atoms is trigonal prismatic. Stability issues have hampered the study of interesting phenomena in two-dimensional 1T phase TMDs. Phase conversion in TMDs involves transformation by chemistry at room temperature and pressure. It is possible to convert 2H phase 2D TMDs to the 1T phase or locally pattern the 1T phase on the 2H phase. The chemically converted 1T phase 2D TMDs exhibit interesting properties that are being exploited for catalysis, source and drain electrodes in field-effect transistors, and energy storage. We summarize the key properties of 2D 1T phase TMDs and their applications as electrodes for energy and electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. M. Py, R. Haering, Can. J. Phys. 61, 76 (1983).

    Google Scholar 

  2. P. Joensen, R. Frindt, S.R. Morrison, Mater. Res. Bull. 21, 457 (1986).

    Google Scholar 

  3. J. Heising, M.G. Kanatzidis, J. Am. Chem. Soc. 121, 638 (1999).

    Google Scholar 

  4. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, ACS Nano 6, 7311 (2012).

    Google Scholar 

  5. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11, 5111 (2011).

    Google Scholar 

  6. X. Qian, J. Liu, L. Fu, J. Li, Science 346, 1344 (2014).

    Google Scholar 

  7. B. Schönfeld, J. Huang, S. Moss, Acta Crystallogr. B Struct. Sci. 39, 404 (1983). Figure 4. Precise control of phase conversion of MoS 2 single-layer triangles. (a) The dark regions represent the 1T phase, while the lighter regions are the 2H phase. (b) Photoluminescence map of the patterned triangle is shown. The bright regions represent the semiconducting phase, and the darker regions represent the metallic 1T phase where the luminescence is quenched. Data reprinted with permission from Reference 24. © 2014 American Institute of Physics.

  8. M. Calandra, Phys. Rev. B Condens. Matter 88, 245428 (2013).

    Google Scholar 

  9. M. Kan, J. Wang, X. Li, S. Zhang, Y. Li, Y. Kawazoe, Q. Sun, P. Jena, J. Phys. Chem. C 118, 1515 (2014).

    Google Scholar 

  10. H.-L. Tsai, J. Heising, J.L. Schindler, C.R. Kannewurf, M.G. Kanatzidis, Chem. Mater. 9, 879 (1997).

    Google Scholar 

  11. D. Yang, R. Frindt, J. Phys. Chem. Solids 57, 1113 (1996).

    Google Scholar 

  12. J. Heising, M.G. Kanatzidis, J. Am. Chem. Soc. 121, 11720 (1999).

    Google Scholar 

  13. P. Joensen, E. Crozier, N. Alberding, R. Frindt, J. Phys. C Solid State Phys. 20, 4043 (1987).

    Google Scholar 

  14. S.J. Sandoval, D. Yang, R. Frindt, J. Irwin, Phys. Rev. B Condens. Matter 44, 3955 (1991).

    Google Scholar 

  15. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, Nat. Mater. 12, 850 (2013).

    Google Scholar 

  16. A.N. Enyashin, G. Seifert, Comput. Theor. Chem. 999, 13 (2012).

    Google Scholar 

  17. Y. Cheng, A. Nie, Q. Zhang, L.-Y. Gan, R. Shahbazian-Yassar, U. Schwingenschlogl, ACS Nano 8, 11447 (2014).

    Google Scholar 

  18. A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, G. Seifert, J. Phys. Chem. C 115, 24586 (2011).

    Google Scholar 

  19. Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K. Suenaga, Nat. Nanotechnol. 9, 391 (2014).

    Google Scholar 

  20. L. Wang, Z. Xu, W. Wang, X. Bai, J. Am. Chem. Soc. 136, 6693 (2014).

    Google Scholar 

  21. Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang, X. Zhu, N.J. Halas, P. Nordlander, P.M. Ajayan, J. Lou, Adv. Mater. 26, 6467 (2014).

    Google Scholar 

  22. K.-A.N. Duerloo, Y. Li, E.J. Reed, Nat. Commun. 5, 4214 (2014).

    Google Scholar 

  23. R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Nat. Mater. 13, 1128 (2014).

    Google Scholar 

  24. R. Kappera, D. Voiry, S.E. Yalcin, W. Jen, M. Acerce, S. Torrel, B. Branch, S. Lei, W. Chen, S. Najmaei, APL Mater. 2, 092516 (2014).

    Google Scholar 

  25. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 13, 6222 (2013).

    Google Scholar 

  26. Y. Iwasa, J. Ye, Y. Zhang, Science 338, 1193 (2012).

    Google Scholar 

  27. N.F. Yuan, K.F. Mak, K. Law, Phys. Rev. Lett. 113, 097001 (2014).

    Google Scholar 

  28. M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 135, 10274 (2013).

    Google Scholar 

  29. B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, J. Am. Chem. Soc. 136, 14121 (2014).

    Google Scholar 

  30. U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj, C. Rao, Angew. Chem. Int. Ed. 52, 13057 (2013).

    Google Scholar 

  31. H. Wang, Z. Lu, S. Xu, D. Kong, J.J. Cha, G. Zheng, P.-C. Hsu, K. Yan, D. Bradshaw, F.B. Prinz, Y. Cui, Proc. Natl. Acad. Sci. U.S.A. 110, 19701 (2013).

    Google Scholar 

  32. M.S. Whittingham, F.R. Gamble, Mater. Res. Bull. 10, 363 (1975).

    Google Scholar 

  33. M.B. Dines, Mater. Res. Bull. 10, 287 (1975).

    Google Scholar 

  34. Y. Liang, R. Feng, S. Yang, H. Ma, J. Liang, J. Chen, Adv. Mater. 23, 640 (2011).

    Google Scholar 

  35. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Chem. Mater. 22, 4522 (2010).

    Google Scholar 

  36. G.S. Bang, K.W. Nam, J.Y. Kim, J. Shin, J.W. Choi, S.-Y. Choi, ACS Appl. Mater. Interfaces 6, 7084 (2014).

    Google Scholar 

  37. K. Chang, W. Chen, ACS Nano 5, 4720 (2011).

    Google Scholar 

  38. H. Hwang, H. Kim, J. Cho, Nano Lett. 11, 4826 (2011).

    Google Scholar 

  39. M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Science 341, 1502 (2013).

    Google Scholar 

  40. O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Nat. Commun. 4, 1716 (2013).

    Google Scholar 

  41. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23, 4248 (2011).

    Google Scholar 

  42. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, ACS Nano 6, 1322 (2012).

    Google Scholar 

  43. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26, 992 (2014).

    Google Scholar 

  44. M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516, 78 (2014).

    Google Scholar 

  45. L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, Small 9, 2905 (2013).

    Google Scholar 

  46. J.M. Soon, K.P. Loh, Electrochem. Solid-State Lett. 10, A250 (2007).

    Google Scholar 

  47. E.G. da Silveira Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner, E.R. Leite, Adv. Energy Mater. 4, 1301380 (2014).

    Google Scholar 

  48. S. Ratha, C.S. Rout, ACS Appl. Mater. Interfaces 5, 11427 (2013).

    Google Scholar 

  49. Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma, G. Huang, D. Chen, J.Y. Lee, J. Mater. Chem. A 1, 2202 (2013).

    Google Scholar 

  50. X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong, H. Zhang, Small 9, 3433 (2013).

    Google Scholar 

  51. L. David, R. Bhandavat, G. Singh, ACS Nano 8, 1759 (2014).

    Google Scholar 

  52. X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev. 43, 3303 (2014).

    Google Scholar 

  53. B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, L. Zhi, Energy Environ. Sci. 5, 5226 (2012).

    Google Scholar 

  54. X. Wang, X. Shen, Z. Wang, R. Yu, L. Chen, ACS Nano 8, 11394 (2014).

    Google Scholar 

  55. M. Mortazavi, C. Wang, J. Deng, V.B. Shenoy, N.V. Medhekar, J. Power Sources 268, 279 (2014).

    Google Scholar 

  56. Y.-X. Wang, K.H. Seng, S.-L. Chou, J.-Z. Wang, Z. Guo, D. Wexler, H.-K. Liu, S.-X. Dou, Chem. Commun. 50, 10730 (2014).

    Google Scholar 

  57. B.L. Ellis, L.F. Nazar, Curr. Opin. Solid State Mater. Sci. 16, 168 (2012).

    Google Scholar 

  58. M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10, 313 (2015).

    Google Scholar 

  59. J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. Xie, J. Am. Chem. Soc. 133, 17832 (2011).

    Google Scholar 

  60. H. Tributsch, J. Bennett, J. Electroanal. Chem. Interfacial Electrochem. 81, 97 (1977).

    Google Scholar 

  61. H. Tributsch, Ber. Bunsenges Phys. Chem. 81, 361 (1977).

    Google Scholar 

  62. B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, J. Am. Chem. Soc. 127, 5308 (2005).

    Google Scholar 

  63. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317, 100 (2007).

    Google Scholar 

  64. J. Bonde, P.G. Moses, T.F. Jaramillo, J.K. Nørskov, I. Chorkendorff, Faraday Discuss. 140, 219 (2009).

    Google Scholar 

  65. D. Merki, H. Vrubel, L. Rovelli, S. Fierro, X. Hu, Chem. Sci. 3, 2515 (2012).

    Google Scholar 

  66. J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Nat. Mater. 11, 963 (2012).

    Google Scholar 

  67. D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Nano Lett. 13, 1341 (2013).

    Google Scholar 

  68. Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo, Nano Lett. 11, 4168 (2011).

    Google Scholar 

  69. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 133, 7296 (2011).

    Google Scholar 

  70. L. Liao, J. Zhu, X. Bian, L. Zhu, M.D. Scanlon, H.H. Girault, B. Liu, Adv. Funct. Mater. 23, 5326 (2013).

    Google Scholar 

  71. E.G. Firmiano, M.A. Cordeiro, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, E.R. Leite, Chem. Commun. 48, 7687 (2012).

    Google Scholar 

  72. J. Yang, D. Voiry, S.J. Ahn, D. Kang, A.Y. Kim, M. Chhowalla, H.S. Shin, Angew. Chem. Int. Ed. 52, 13751 (2013).

    Google Scholar 

  73. D. Merki, S. Fierro, H. Vrubel, X. Hu, Chem. Sci. 2, 1262 (2011).

    Google Scholar 

  74. H. Vrubel, D. Merki, X. Hu, Energy Environ. Sci. 5, 6136 (2012).

    Google Scholar 

  75. Y.H. Chang, C.T. Lin, T.Y. Chen, C.L. Hsu, Y.H. Lee, W. Zhang, K.H. Wei, L.J. Li, Adv. Mater. 25, 756 (2013).

    Google Scholar 

  76. T.-Y. Chen, Y.-H. Chang, C.-L. Hsu, K.-H. Wei, C.-Y. Chiang, L.-J. Li, Int. J. Hydrogen Energy 38, 12302 (2013).

    Google Scholar 

  77. X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Nat. Commun. 4, 1444 (2013).

    Google Scholar 

  78. M.S. Faber, R. Dziedzic, M.A. Lukowski, N.S. Kaiser, Q. Ding, S. Jin, J. Am. Chem. Soc. 136, 10053 (2014).

    Google Scholar 

  79. M.S. Faber, M.A. Lukowski, Q. Ding, N.S. Kaiser, S. Jin, J. Phys. Chem. C 118, 21347 (2014).

    Google Scholar 

  80. S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S.G. Mhaisalkar, F. Cheng, Q. Yan, J. Chen, S. Ramakrishna, Angew. Chem. Int. Ed. 53, 12594 (2014).

    Google Scholar 

  81. D.-Y. Wang, M. Gong, H.-L. Chou, C.-J. Pan, H.-A. Chen, Y. Wu, M.-C. Lin, M. Guan, J. Yang, C.-W. Chen, J. Am. Chem. Soc. 137, 1587 (2015).

    Google Scholar 

  82. C. Tang, Z. Pu, Q. Liu, A.M. Asiri, X. Sun, Electrochim. Acta 153, 508 (2015).

    Google Scholar 

  83. D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, Energy Environ. Sci. 6, 3553 (2013).

    Google Scholar 

  84. H.-Y. Chang, S. Yang, J. Lee, L. Tao, W.-S. Hwang, D. Jena, N. Lu, D. Akinwande, ACS Nano 7, 5446 (2013).

    Google Scholar 

  85. S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano Lett. 13, 100 (2012).

    Google Scholar 

  86. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Google Scholar 

  87. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, T. Palacios, Nano Lett. 12, 4674 (2012).

    Google Scholar 

  88. Y. Yoon, K. Ganapathi, S. Salahuddin, Nano Lett. 11, 3768 (2011).

    Google Scholar 

  89. S. Kim, A. Konar, W.-S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Nat. Commun. 3, 1011 (2012).

    Google Scholar 

  90. H. Peelaers, C.G. Van de Walle, Phys. Rev. B Condens. Matter 86, 241401 (2012).

    Google Scholar 

  91. L. Yu, Y.-H. Lee, X. Ling, E.J.G. Santos, Y.C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, T. Palacios, Nano Lett. 14, 3055 (2014).

    Google Scholar 

  92. T. Roy, M. Tosun, J.S. Kang, A.B. Sachid, S.B. Desai, M. Hettick, C.C. Hu, A. Javey, ACS Nano 8, 6259 (2014).

    Google Scholar 

  93. Y.T. Lee, K. Choi, H.S. Lee, S.W. Min, P.J. Jeon, D.K. Hwang, H.J. Choi, S. Im, Small 10, 2356 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Chhowalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhowalla, M., Voiry, D., Yang, J. et al. Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bulletin 40, 585–591 (2015). https://doi.org/10.1557/mrs.2015.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.142

Navigation