Skip to main content
Log in

Focused ion beam and scanning electron microscopy for 3D materials characterization

  • Focused Ion Beam Technology and Applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In this article, we review focused ion beam serial sectioning microscopy paired with analytical techniques, such as electron backscatter diffraction or x-ray energy-dispersive spectrometry, to study materials chemistry and structure in three dimensions. These three-dimensional microanalytical approaches have been greatly extended due to advances in software for both microscope control and data interpretation. Samples imaged with these techniques reveal structural features of materials that can be quantitatively characterized with rich chemical and crystallographic detail. We review these technological advances and the application areas that are benefitting. We also consider the challenges that remain for data collection, data processing, and visualization, which collectively limit the scale of these investigations. Further, we discuss recent innovations in quantitative analyses and numerical modeling that are being applied to microstructures illuminated by these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. L. Holzer, M. Cantoni, Review of FIB Tomography in Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford University Press,Oxford, UK,2012 ), chap. 11.

  2. D.J. Rowenhorst, A.C. Lewis, G. Spanos, Acta Mater. 58, 5511 (2010).

    Google Scholar 

  3. D.M. Saylor, A. Morawiec, G.S. Rohrer, Acta Mater. 51, 3663 (2003).

    Google Scholar 

  4. H. Beladi, G.S. Rohrer, Acta Mater. 61, 1404 (2013).

    Google Scholar 

  5. S.J. Dillon, L. Helmick, H.M. Miller, L. Wilson, R. Gemman, R.V. Petrova, K. Barmak, G.S. Rohrer, P.A. Salvador, J. Am. Ceram. Soc. 94, 4045 (2011).

    Google Scholar 

  6. S.J. Dillon, G.S. Rohrer, J. Am. Ceram. Soc. 92, 1580 (2009).

    Google Scholar 

  7. M.A. Groeber, B.K. Haley, M.D. Uchic, D.M. Dimiduk, S. Ghosh, Mater. Charact. 57, 259 (2006).

    Google Scholar 

  8. A. Khorashadizadeh, D. Raabe, M. Winning, R. Pippan, Adv. Eng. Mater. 13, 237 (2011).

    Google Scholar 

  9. J. Li, S.J. Dillon, G.S. Rohrer, Acta Mater. 57, 4304 (2009).

    Google Scholar 

  10. G.S. Rohrer, J. Li, S. Lee, A.D. Rollett, M. Groeber, M.D. Uchic, Mater. Sci. Technol. 26, 661 (2010).

    Google Scholar 

  11. FEI Visualization Sciences Group, Avizo (2013); http://www.vsg3d.com/avizo/overview.

  12. M.A. Groeber, M.A. Jackson, Integr. Mater. Manuf. Innov. in press (2014).

  13. Kitware, ParaView (2013); http://www.paraview.org/.

  14. G.S. Rohrer, J. Am. Ceram. Soc. 94, 633 (2011).

    Google Scholar 

  15. G.S. Rohrer, D.M. Saylor, B. El Dasher, B.L. Adams, A.D. Rollett, P. Wynblatt, Z. Metallkd. 95, 197 (2004).

    Google Scholar 

  16. G. Rohrer, Grain Boundary Data Archive (2013); http://mimp.mems.cmu.edu/~gr20/Grain_Boundary_Data_Archive.

  17. S.-B. Lee,T.S. Key,Z. Liang,R.E. García,S. Wang,X. Tricoche,G.S. Rohrer,Y. Saito, C. Ito, T. Tani, J. Eur. Ceram. Soc. 33, 313 (2013).

    Google Scholar 

  18. A. Rollett, R.A. Lebensohn, M. Groeber, Y. Choi, J. Li, G.S. Rohrer, Model. Simul. Mater. Sci. Eng. 18, 074005 (2010).

    Google Scholar 

  19. S. Ghosh, Y. Bhandari, M. Groeber, Comput. Aided Des. 40 (3), 293 (2008).

    Google Scholar 

  20. A.C. Lewis, S.M. Qidwai, M. Jackson, A.B. Geltmacher, JOM 63 (3), 35 (2011).

    Google Scholar 

  21. R. Marschallinger, Scanning 20, 65 (1998).

    Google Scholar 

  22. P.G. Kotula, M.R. Keenan, J.R. Michael, Microsc. Microanal. 9 (Suppl. 2), 1004 (2003).

    Google Scholar 

  23. P.G. Kotula, M.R. Keenan, J.R. Michael, Microsc. Microanal. 10 (Suppl. 2), 1132 (2004).

    Google Scholar 

  24. P.G. Kotula, M.R. Keenan, J.R. Michael, Microsc. Microanal. 12, 36 (2006).

    Google Scholar 

  25. M. Schaffer, J. Wagner, B. Schaffer, M. Schmied, H. Mulders, Ultramicros-copy 107, 587 (2007).

    Google Scholar 

  26. Oxford Instruments, Automated3D XEDS FIB integration; http://www.oxford-instruments.com/products/microanalysis/energy-dispersive-x-ray-systems-eds-edx/eds-for-sem/3d-eds-analysis.

  27. M. Schaffer, J. Wagner, Microchim. Acta 161, 421 (2008).

    Google Scholar 

  28. P.G. Kotula, M.R. Keenan, J.R. Michael, Microsc. Microanal. 9, 1 (2003).

    Google Scholar 

  29. P.G. Kotula, M.H. Van Benthem, N.R. Sorensen, IEEE Statistical Signal Processing Workshop (SSP) (2012), pp. 672–675 .

  30. H. Iwai, N. Shikazonob, T. Matsuic, H. Teshimab, M. Kishimotoa, R. Kishidac, D. Hayashia, K. Matsuzakib, D. Kannob, M. Saitoa, H. Muroyamac, K. Eguchic, N. Kasagib, H. Yoshida, J. Power Sources 195 (4), 955 (2010).

    Google Scholar 

  31. N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24, 2902 (2006).

    Google Scholar 

  32. B.L. Doyle, D.S. Walsh, P.G. Kotula, P. Rossi, T. Schulein, M. Rohde, X-Ray Spectrom. 34 (4), 279 (2005).

    Google Scholar 

  33. P.G. Kotula, J.R. Michael, M. Rohde, Microsc. Microanal. 14 (Suppl. 2) 116 (2008).

    Google Scholar 

  34. V. Shushakova, E.R. Fuller Jr., F. Heidelbach, D. Mainprice, S. Siegesmund, Environ. Earth Sci. 69 (4), 1281 (2013).

    Google Scholar 

  35. R.D. Holbrook, J.M. Davis, K.C.K. Scott, C. Szakal, J. Microsc. 246, 143 (2012).

    Google Scholar 

  36. K. Scott, N.W.M. Ritchie, J. Microsc. 233, 331 (2009).

    Google Scholar 

Download references

Acknowledgments

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy (DOE) under contract DE-AC0494AL85000. P. K. acknowledges Michael Rye at Sandia for helping with manual serial sectioning and 3D XEDS acquisition. G.S.R. acknowledges financial support from the ONR-MURI under Grant No. N00014–11–1-0678 and the MRSEC program of the National Science Foundation under Award DMR-0520425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Kotula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotula, P.G., Rohrer, G.S. & Marsh, M.P. Focused ion beam and scanning electron microscopy for 3D materials characterization. MRS Bulletin 39, 361–365 (2014). https://doi.org/10.1557/mrs.2014.55

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.55

Navigation