Skip to main content
Log in

Fulfilling Feynman’s dream: “Make the electron microscope 100 times better”—Are we there yet?

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In his famous 1959 lecture “There’s plenty of room at the bottom,” Richard Feynman put out this challenge: “Is there no way to make the electron microscope more powerful?” He called for “improving the electron microscope by a hundred times,” which, given that the resolution then was about 10 Å, meant he was calling for a resolution in the range of 0.1 Å. Today’s aberration-corrected microscopes have come a long way, achieving a resolution of around 0.5 Å. This has enormously improved our ability to see atomic arrangements in crystals, measure ferroelectric displacements, and even determine valence and spin states with electron energy-loss spectroscopy. However, there remain many structures crucial to materials properties that we cannot yet see. Continuing the road toward Feynman’s goal would bring these structures to light, with yet more dramatic impacts on the entire field of materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. R.P. Feynman, J. Microelectromech. Syst. 1, 60 (1992).

    Google Scholar 

  2. O. Scherzer, Optik 2, 114 (1947).

    CAS  Google Scholar 

  3. O. Scherzer, Z. Phys. A: Hadrons Nucl. 101, 593 (1936).

    Google Scholar 

  4. G.D. Archard, Br. J. Appl. Phys. 5, 294 (1954).

    Google Scholar 

  5. V.D. Beck, Optik 53, 241 (1979).

    Google Scholar 

  6. A.V. Crewe, D. Kopf, Optik 55, 1 (1980).

    Google Scholar 

  7. H. Rose, Nucl. Instrum. Methods Phys. Res. 187, 187 (1981).

    Google Scholar 

  8. O.L. Krivanek, N. Dellby, A.R. Lupini, Ultramicroscopy 78, 1 (1999).

    CAS  Google Scholar 

  9. J. Zach, M. Haider, Nucl. Instrum. Methods Phys. Res., A 363, 316 (1995).

    CAS  Google Scholar 

  10. S. Uhlemann, M. Haider, Ultramicroscopy 72, 109 (1998).

    CAS  Google Scholar 

  11. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Nature 392, 768 (1998).

    CAS  Google Scholar 

  12. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban, Ultramicroscopy 75, 53 (1998).

    CAS  Google Scholar 

  13. M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban, J. Electron Microsc. 47, 395 (1998).

    CAS  Google Scholar 

  14. N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini, Microscopy 50, 177 (2001).

    CAS  Google Scholar 

  15. P.E. Batson, N. Dellby, O.L. Krivanek, Nature 418, 617 (2002).

    CAS  Google Scholar 

  16. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides, S.J. Pennycook, Science 305, 1741 (2004).

    CAS  Google Scholar 

  17. R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen, Phys. Rev. Lett. 102, 96101 (2009).

    Google Scholar 

  18. H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama Y. Kondo, K. Takayanagi, J. Electron Microsc. 58, 357 (2009).

    CAS  Google Scholar 

  19. S.J. Pennycook, L.A. Boatner, Nature 336, 565 (1988).

    CAS  Google Scholar 

  20. S.J. Pennycook, D.E. Jesson, Phys. Rev. Lett. 64, 938 (1990).

    CAS  Google Scholar 

  21. S.J. Pennycook, D.E. Jesson, Ultramicroscopy 37, 14 (1991).

    Google Scholar 

  22. Lord Rayleigh, Philos. Mag. 42, 167 (1896).

    Google Scholar 

  23. S.J. Pennycook, MRS Bull. 37, 943 (2012).

    CAS  Google Scholar 

  24. S.J. Pennycook, C. Colliex, MRS Bull. 37, 13 (2012).

    CAS  Google Scholar 

  25. M. von Ardenne, Z. Phys. 109, 553 (1938).

    Google Scholar 

  26. A.V. Crewe, J. Appl. Phys. 36, 2605 (1965).

    Google Scholar 

  27. A.V. Crewe, J. Wall, J. Langmore, Science 168, 1338 (1970).

    CAS  Google Scholar 

  28. J. Lee, W. Zhou, S.J. Pennycook, J.-C. Idrobo, S.T. Pantelides, Nat. Commun. 4, 1650 (2013).

    Google Scholar 

  29. W. Zhou, M.D. Kapetanakis, M.P. Prange, S.T. Pantelides, S.J. Pennycook, J.-C. Idrobo, Phys. Rev. Lett. 109, 206803 (2012).

    Google Scholar 

  30. S.J. Pennycook, S.V. Kalinin, Nature, 515, 587 (2014).

    Google Scholar 

  31. C.L. Jia, K.W. Urban, M. Alexe, D. Hesse, I. Vrejoiu, Science 331, 1420 (2011).

    CAS  Google Scholar 

  32. C. Jia, S. Mi, K. Urban, I. Vrejoiu, M. Alexe, D. Hesse, Nat. Mater. 7, 57 (2008).

    CAS  Google Scholar 

  33. C.L. Jia, S.B. Mi, M. Faley, U. Poppe, J. Schubert, K. Urban, Phys. Rev. B: Condens. Matter 79, 081405 (2009).

    Google Scholar 

  34. C. Jia, V. Nagarajan, J. He, L. Houben, T. Zhao, R. Ramesh, K. Urban, R. Waser, Nat. Mater. 6, 64 (2007).

    CAS  Google Scholar 

  35. K.W. Urban, MRS Bull. 32, 946 (2007).

    CAS  Google Scholar 

  36. K. Urban, Science 321, 506 (2008).

    CAS  Google Scholar 

  37. A. Borisevich, O.S. Ovchinnikov, H.J. Chang, M.P. Oxley, P. Yu, J. Seidel, E.A. Eliseev, A.N. Morozovska, R. Ramesh, S.J. Pennycook, S.V. Kalinin, ACS Nano 4, 6071 (2010).

    CAS  Google Scholar 

  38. A.Y. Borisevich, H.J. Chang, M. Huijben, M.P. Oxley, S. Okamoto, M.K. Niranjan, J.D. Burton, E.Y. Tsymbal, Y.H. Chu, P. Yu, R. Ramesh, S.V. Kalinin, S.J. Pennycook, Phys. Rev. Lett. 105, 087204 (2010).

    CAS  Google Scholar 

  39. Y.-M. Kim, A. Kumar, A. Hatt, A.N. Morozovska, A. Tselev, M.D. Biegalski, I. Ivanov, E.A. Eliseev, S.J. Pennycook, J.M. Rondinelli, S.V. Kalinin, A.Y. Borisevich, Adv. Mater. 25, 2497 (2013).

    CAS  Google Scholar 

  40. C. Cantoni, J. Gazquez, F. Miletto Granozio, M.P. Oxley, M. Varela, A.R. Lupini, S.J. Pennycook, C. Aruta, U.S. di Uccio, P. Perna, D. Maccariello, Adv. Mater. 24, 3952 (2012).

    CAS  Google Scholar 

  41. Y. Peng, M.P. Oxley, A.R. Lupini, M.F. Chisholm, S.J. Pennycook, Microsc. Anal. 14, 36 (2008).

    CAS  Google Scholar 

  42. E. Abe, S.J. Pennycook, A.P. Tsai, Nature 421, 347 (2003).

    CAS  Google Scholar 

  43. T.J. Pennycook, J.R. McBride, S.J. Rosenthal, S.J. Pennycook, S.T. Pantelides, Nano Lett. 12, 3038 (2012).

    CAS  Google Scholar 

  44. C. Li, J. Poplawsky, Y. Wu, A.R. Lupini, A. Mouti, D.N. Leonard, N. Paudel, K. Jones, W. Yin, M. Al-Jassim, Y. Yan, S.J. Pennycook, Ultramicroscopy 134, 113 (2013).

    CAS  Google Scholar 

  45. K. van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook, Appl. Phys. Lett. 87, 034104 (2005).

    Google Scholar 

  46. K. van Benthem, A.R. Lupini, M.P. Oxley, S.D. Findlay, L.J. Allen, S.J. Pennycook, Ultramicroscopy 106, 1062 (2006).

    Google Scholar 

  47. A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Proc. Natl. Acad. Sci. U.S.A. 103, 3044 (2006).

    CAS  Google Scholar 

  48. A.Y. Borisevich, A.R. Lupini, S. Travaglini, S.J. Pennycook, Microscopy 55, 7 (2006).

    CAS  Google Scholar 

  49. P.D. Nellist, G. Behan, A.I. Kirkland, C.J.D. Hetherington, Appl. Phys. Lett. 89, 124105 (2006).

    Google Scholar 

  50. G. Behan, E.C. Cosgriff, A.I. Kirkland, P.D. Nellist, Philos. Trans. R. Soc. Lon. A 367, 3825 (2009).

    CAS  Google Scholar 

  51. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer, Phys. Rev. Lett. 100, 206101 (2008).

    Google Scholar 

  52. J.M. Lebeau, A. D’alfonso, S.D. Findlay, S. Stemmer, L. Allen, Phys. Rev. B: Condens. Matter 80, 174106 (2009).

    Google Scholar 

  53. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer, Nano Lett. 10, 4405 (2010).

    Google Scholar 

  54. R. Ishikawa, A.R. Lupini, S.D. Findlay, T. Taniguchi, S.J. Pennycook, Nano Lett. 14, 1903 (2014).

    CAS  Google Scholar 

  55. A. De Backer, G.T. Martinez, A. Rosenauer, S. Van Aert, Ultramicroscopy 134, 23 (2013).

    Google Scholar 

  56. S. Van Aert, A. De Backer, G. Martinez, B. Goris, S. Bals, G. Van Tendeloo, A. Rosenauer, Phys. Rev. B: Condens. Matter 87, 064107 (2013).

    Google Scholar 

  57. S. Van Aert, K.J. Batenburg, M.D. Rossell, R. Erni, G. Van Tendeloo, Nature 470, 374 (2012).

    Google Scholar 

  58. S. Bals, M. Casavola, M.A. Van Huis, S. Van Aert, K.J. Batenburg, G. Van Tendeloo, D. Vanmaekelbergh, Nano Lett. 11, 3420 (2011).

    CAS  Google Scholar 

  59. S. Bals, B. Goris, T. Altantzis, H. Heidari, S. Van Aert, G. Van Tendeloo, C.R. Phys. 15, 140 (2014).

    CAS  Google Scholar 

  60. B. Goris, A. De Backer, S. Van Aert, S. Gómez-Graña, L.M. Liz-Marzan, G. Van Tendeloo, S. Bals, Nano Lett. 13, 4236 (2013).

    CAS  Google Scholar 

  61. J. Hwang, J. Zhang, A. D’Alfonso, L. Allen, S. Stemmer, Phys. Rev. Lett. 111, 266101 (2013).

    Google Scholar 

  62. P.D. Nellist, S.J. Pennycook, Science 274, 413 (1996).

    CAS  Google Scholar 

  63. K. Sohlberg, S. Rashkeev, A.Y. Borisevich, S.J. Pennycook, S.T. Pantelides, ChemPhysChem 5, 1893 (2004).

    CAS  Google Scholar 

  64. J. Lee, Z. Yang, W. Zhou, S.J. Pennycook, S.T. Pantelides, M.F. Chisholm, Proc. Natl. Acad. Sci. U.S.A. 111, 7522 (2014).

    CAS  Google Scholar 

  65. J. He, A. Borisevich, S.V. Kalinin, S.J. Pennycook, S.T. Pantelides, Phys. Rev. Lett. 105, 227203 (2010).

    Google Scholar 

  66. M. Varela, A.R. Lupini, K.V. Benthem, A.Y. Borisevich, M.F. Chisholm, N. Shibata, E. Abe, S.J. Pennycook, Annu. Rev. Mater. Res. 35, 539 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

The author expresses his gratitude to his colleagues E. Abe, A.Y. Borisevich, M.F. Chisholm, J. He, J.-C. Idrobo, R. Ishikawa, S. Kalinin, Y.-M. Kim, J. Lee, A.R. Lupini, P.D. Nellist, S.T. Pantelides, K. Sohlberg, M. Varela, Z. Yang, and W. Zhou for the research collaborations presented here, as well as R. Ramesh and the faculty in the Department of Materials Science and Engineering at the University of Tennessee.

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a Symposium X (Frontiers of Materials Research) presentation given on April 23, 2014, at the MRS Spring Meeting in San Francisco, Calif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennycook, S.J. Fulfilling Feynman’s dream: “Make the electron microscope 100 times better”—Are we there yet?. MRS Bulletin 40, 71–78 (2015). https://doi.org/10.1557/mrs.2014.307

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.307

Navigation