Skip to main content
Log in

Movie-mode dynamic electron microscopy

  • Frontiers of in situ electron microscopy
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The need to understand fast, complex physical phenomena through direct in situ observation has spurred the development of high-time-resolution transmission electron microscopy (TEM). Two complementary approaches have emerged: the single-shot and stroboscopic techniques. Single-shot TEM has advanced through the development of dynamic transmission electron microscopy (DTEM) and, more recently, by the advent of movie-mode DTEM, which enables high-frame-rate in situ TEM experimentation by capturing nanosecond-scale sequences of images or diffraction patterns. Previous DTEM studies produced only single snapshots of fast material processes. Movie-mode DTEM provides the ability to track the creation, motion, and interaction of individual defects, phase fronts, and chemical reaction fronts, providing invaluable information on the chemical, microstructural, and atomic-level features that govern rapid material processes. This article discusses movie-mode DTEM technology, its application in the study of reaction dynamics in Ti–B-based reactive nanolaminates, and future instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, (Nelson Thrones Ltd., Delta Place, UK, 2nd ed. 1992).

    Google Scholar 

  2. G.V. Spivak, O.P. Pavlyuchenko, V.I. Petrov, Bull. Acad. Sci. USSR Phys. Ser. 30, 822 (1966).

    Google Scholar 

  3. O. Bostanjoglo, Adv. Imaging Electron Phys. 121, 1 (2002).

    CAS  Google Scholar 

  4. O. Bostanjoglo, R. Elschner, Z. Mao, T. Nink, M. Weingartner, Ultramicroscopy 81, 141 (2000).

    CAS  Google Scholar 

  5. O. Bostanjoglo, R.P. Tornow, W. Tornow, J. Phys. E: Sci. Instrum. 20, 556 (1987).

    CAS  Google Scholar 

  6. H. Domer, O. Bostanjoglo, Rev. Sci. Instrum. 74, 4369 (2003).

    CAS  Google Scholar 

  7. B. Barwick, H.S. Park, O.H. Kwon, J.S. Baskin, A.H. Zewail, Science 322, 1227 (2008).

    CAS  Google Scholar 

  8. A.H. Zewail, Philos. Trans. R. Soc. Lond. A 363, 315 (2005).

    CAS  Google Scholar 

  9. A.H. Zewail, Science 328, 187 (2010).

    CAS  Google Scholar 

  10. M.R. Armstrong, K. Boyden, N.D. Browning, G.H. Campbell, J.D. Colvin, W.J. DeHope, A.M. Frank, D.J. Gibson, F. Hartemann, J.S. Kim, W.E. King, T.B. LaGrange, B.J. Pyke, B.W. Reed, R.M. Shuttlesworth, B.C. Stuart, B.R. Torralva, Ultramicroscopy 107, 356 (2007).

    CAS  Google Scholar 

  11. M.R. Armstrong, B.W. Reed, B.R. Torralva, N.D. Browning, Appl. Phys. Lett. 90, 114101 (2007).

    Google Scholar 

  12. T. LaGrange, M.R. Armstrong, K. Boyden, C.G. Brown, G.H. Campbell, J.D. Colvin, W.J. DeHope, A.M. Frank, D.J. Gibson, F.V. Hartemann, J.S. Kim, W.E. King, B.J. Pyke, B.W. Reed, M.D. Shirk, R.M. Shuttlesworth, B.C. Stuart, B.R. Torralva, N.D. Browning, Appl. Phys. Lett. 89, 044105 (2006).

    Google Scholar 

  13. T. LaGrange, G.H. Campbell, B. Reed, M. Taheri, J.B. Pesavento, J.S. Kim, N.D. Browning, Ultramicroscopy 108, 1441 (2008).

    Google Scholar 

  14. T. LaGrange, B.W. Reed, M.K. Santala, J.T. McKeown, A. Kulovits, J.M. Wiezorek, L. Nikolova, F. Rosei, B.J. Siwick, G.H. Campbell, Micron 43, 1108 (2012).

    Google Scholar 

  15. B.W. Reed, M.R. Armstrong, N.D. Browning, G.H. Campbell, J.E. Evans, T. LaGrange, D.J. Masiel, Microsc. Microanal. 15, 272 (2009).

    CAS  Google Scholar 

  16. G.H. Campbell, T. LaGrange, J.S. Kim, B.W. Reed, N.D. Browning, J. Electron Microsc. 59, S67 (2010).

    CAS  Google Scholar 

  17. J.S. Kim, T. LaGrange, B.W. Reed, R. Knepper, T.P. Weihs, N.D. Browning G.H. Campbell, Acta Mater. 59, 3571 (2011).

    CAS  Google Scholar 

  18. J.S. Kim, T. LaGrange, B.W. Reed, M.L. Taheri, M.R. Armstrong, W.E. King, N.D. Browning, G.H. Campbell, Science 321, 1472 (2008).

    CAS  Google Scholar 

  19. T. LaGrange, G.H. Campbell, P.E.A. Turchi, W.E. King, Acta Mater. 55, 5211 (2007).

    Google Scholar 

  20. T. LaGrange, D.S. Grummon, B.W. Reed, N.D. Browning, W.E. King, G.H. Campbell, Appl. Phys. Lett. 94, 184101 (2009).

    Google Scholar 

  21. J.T. McKeown, A.K. Kulovits, C. Liu, Kai Zweiacker, B.W. Reed, T. LaGrange, J.M.K. Wiezorek, G.H. Campbell, Acta Mater. 65, 56 (2014).

    Google Scholar 

  22. L. Nikolova, T. LaGrange, B.W. Reed, M.J. Stern, N.D. Browning, G.H. Campbell, J.C. Kieffer, B.J. Siwick, F. Rosei, Appl. Phys. Lett. 97, 3 (2010).

    Google Scholar 

  23. M.L. Taheri, T. LaGrange, B.W. Reed, M.R. Armstrong, G.H. Campbell, W.J. DeHope, J.S. Kim, W.E. King, D.J. Masiel, N.D. Browning, Microsc. Res. Tech. 72, 122 (2009).

    CAS  Google Scholar 

  24. V.A. Lobastov, R. Srinivasan, A.H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 102, 7069 (2005).

    CAS  Google Scholar 

  25. B. Barwick, D.J. Flannigan, A.H. Zewail, Nature 462, 902 (2009).

    CAS  Google Scholar 

  26. F. Carbone, B. Barwick, O.H. Kwon, H.S. Park, J.S. Baskin, A.H. Zewail, Chem. Phys. Lett. 468, 107 (2009).

    CAS  Google Scholar 

  27. F. Carbone, O.H. Kwon, A.H. Zewail, Science 325, 181 (2009).

    CAS  Google Scholar 

  28. D.J. Flannigan, B. Barwick, A.H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 107, 9933 (2010).

    CAS  Google Scholar 

  29. D.J. Flannigan, P.C. Samartzis, A. Yurtsever, A.H. Zewail, Nano Lett. 9, 875 (2009).

    CAS  Google Scholar 

  30. O.H. Kwon, B. Barwick, H.S. Park, J.S. Baskin, A.H. Zewail, Nano Lett. 8, 3557 (2008).

    CAS  Google Scholar 

  31. O.H. Kwon, B. Barwick, H.S. Park, J.S. Baskin, A.H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 105, 8519 (2008).

    CAS  Google Scholar 

  32. B.W. Reed, T. LaGrange, R.M. Shuttlesworth, D.J. Gibson, G.H. Campbell, N.D. Browning, Rev. Sci. Instrum. 81, 053706 (2010).

    CAS  Google Scholar 

  33. M. Krüger, M. Schenk, P. Hommelhoff, Nature 475, 78 (2011).

    Google Scholar 

  34. W.E. King, G.H. Campbell, A. Frank, B. Reed, J.F. Schmerge, B.J. Siwick B.C. Stuart, P.M. Weber, J. Appl. Phys. 97, 111101 (2005).

    Google Scholar 

  35. O. Bostanjoglo, T. Rosin, Mikroskopie 32, 190 (1976).

    Google Scholar 

  36. O. Bostanjoglo, T. Rosin, Proc. 7th Eur. Congr. Electron Microscopy, P. Brederoo, G. Boom, Eds. (Seventh European Congress on Electron Microscopy Foundation, The Hague, The Netherlands, 1980), p. 88.

    Google Scholar 

  37. A. Takaoka, K. Ura, J. Electron Microsc. 37, 117 (1988).

    CAS  Google Scholar 

  38. M.K. Santala, B.W. Reed, S. Raoux, T. Topuria, T. LaGrange, G.H. Campbell, Appl. Phys. Lett. 102, 174105 (2013).

    Google Scholar 

  39. T. LaGrange, B.W. Reed, J.T. McKeown, M.J. Santala, W.J. Dehope, G. Huete, R.M. Shuttlesworth, G.H. Campbell, Microsc. Microanal. 19, 1154 (2013).

    Google Scholar 

  40. H.P. Li, Acta Mater. 51, 3213 (2003).

    CAS  Google Scholar 

  41. M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    CAS  Google Scholar 

  42. W.A. Johnson, R.F. Mehl, Trans. Am. Inst. Min. Metall. Eng. 135, 416 (1939).

    Google Scholar 

  43. T.S. Azatyan, V.M. Maltsev, A.G. Merzhanov, V.A. Seleznev, Combust. Explos. Shock Waves 16, 163 (1980).

    Google Scholar 

  44. J.B. Holt, D.D. Kingman, G.M. Bianchini, Mater. Sci. Eng. 71, 321 (1985).

    CAS  Google Scholar 

  45. B.J. Claessens, S.B. van der Geer, G. Taban, E.J.D. Vredenbregt, O.J. Luiten, Phys. Rev. Lett. 95, 164801 (2005).

    CAS  Google Scholar 

  46. A.J. McCulloch, D.V. Sheludko, S.D. Saliba, S.C. Bell, M. Junker, K.A. Nugent, R.E. Scholten, Nat. Phys. 7, 785 (2011).

    Google Scholar 

Download references

Acknowledgements

MM-DTEM research on reactive multilayer foils was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under field work proposal SCW0979, and the work conducted at Lawrence Livermore National Laboratory (LLNL) was performed under the auspices of the DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We acknowledge David Adams and Robert Reeves of Sandia National Laboratories (Albuquerque, NM) for producing the Ti-B RMFLs used in the MM-DTEM studies presented in this article and for fruitful discussions regarding the dynamics of RMLFs. We also acknowledge Ryan Chen of the Technical Information Department of LLNL for the production of the MM-DTEM graphic shown in Figure 1.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Grange, T., Reed, B.W. & Masiel, D.J. Movie-mode dynamic electron microscopy. MRS Bulletin 40, 22–28 (2015). https://doi.org/10.1557/mrs.2014.282

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.282

Navigation