Skip to main content
Log in

Water in clay nanopores

  • Water at Functional Interfaces
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Clay minerals are layered magnesium or aluminum silicates, which are abundant in the earth’s crust. Used since ancient times for the fabrication of bricks or terracotta, they now find application in the pharmaceutical and plastics industries. They play an essential role in oil and gas recovery, in water availability, and in preventing the dissemination of pollutants. In all of these contexts, the relevant properties of clay minerals are intimately linked to their microscopic structure, which results in a rich behavior with respect to water, solutes, and other fluids. This article provides a brief overview of the structure, dynamics, thermodynamics, and reactivity of water in clays, highlighting the role of the various types of water–mineral interfaces. Based on recent experimental and simulation studies, we discuss several features of these interfacial materials arising from their interactions with water on the molecular scale, including swelling, wetting, hydrodynamics in clay nanopores, reactivity of clay edge sites, ion exchange, and sorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. F. Bergaya, G. Lagaly, Eds., Handbook of Clay Science (Elsevier, Oxford, UK, 2006).

    Google Scholar 

  2. I. Gaus, Int. J. Greenh. Gas Cont. 4, 73 (2010).

    Google Scholar 

  3. G.E. King, paper presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, February 6–8 2012, paper SPE 152596.

  4. P. Delage, Y.J. Cui, A.M. Tang, J. Rock Mech. Geotech. Eng. 2, 111 (2010).

    Google Scholar 

  5. J.M. Cases, I. Bérend, M. François, J.P. Uriot, J.E. Poirier, Langmuir 8, 2730 (1992).

    Google Scholar 

  6. I. Bérend, J.M. Cases, M. François, J.P. Uriot, L.J. Michot, A. Masion, F. Thomas, Clays Clay Miner. 43, 324 (1995).

    Google Scholar 

  7. N. Malikova, A. Cadène, E. Dubois, V. Marry, S. Durand-Vidal, P. Turq, J. Breu, S. Longeville, J.-M. Zanotti, J. Phys. Chem. C 111, 17603 (2007).

    Google Scholar 

  8. B. Dazas, B. Lanson, J. Breu, J.-L. Robert, M. Pelletier, E. Ferrage, Microporous Mesoporous Mater. 181, 233 (2013).

    Google Scholar 

  9. N. Skipper, K. Refson, J. McConnell, Clay Miner. 24, 411 (1989).

    Google Scholar 

  10. A. Delville, J. Phys. Chem. 97, 9703 (1993).

    Google Scholar 

  11. N. Skipper, F.-R. Chang, G. Sposito, Clays Clay Miner. 43, 285 (1995).

    Google Scholar 

  12. E.S. Boek, P.V. Coveney, N.T. Skipper, J. Am. Chem. Soc. 117, 12608 (1995).

    Google Scholar 

  13. E.S. Boek, P.V. Coveney, N.T. Skipper, Langmuir 11, 4629 (1995).

    Google Scholar 

  14. D. Young, D. Smith, J. Phys. Chem. B 104, 9163 (2000).

    Google Scholar 

  15. E.J.M. Hensen, B. Smit, J. Phys. Chem B 106, 12664 (2002).

    Google Scholar 

  16. E.S. Boek, M. Sprik, J. Phys. Chem B 107, 3251 (2003).

    Google Scholar 

  17. T. Tambach, P. Bolhuis, B. Smit, Angew. Chem. Int. Ed. 43, 2650 (2004).

    Google Scholar 

  18. X.-D. Liu, X.-C. Lu, Angew. Chem. Int. Ed. 45, 6300 (2006).

    Google Scholar 

  19. H.D. Whitley, D.E. Smith J. Chem. Phys. 120, 5387 (2004).

  20. B. Carrier, M. Vandamme, R.J.M. Pellenq, H. Van Damme, J. Phys. Chem. C 118, 8933 (2014).

    Google Scholar 

  21. E. Ferrage, B. Sakharov, L.J. Michot, A. Delville, A. Bauer, B. Lanson, S. Grangeon, G. Frapper, M. Jiménez-Ruiz, G. Cuello, J. Phys. Chem. C 115, 1867 (2011).

    Google Scholar 

  22. R.T. Cygan, J.J. Liang, A.G. Kalinichev, J. Phys. Chem. B 108, 1255 (2004).

    Google Scholar 

  23. N. Malikova, S. Longeville, J.-M. Zanotti, E. Dubois, V. Marry, P. Turq J. Ollivier, Phys. Rev. Lett. 101, 265901 (2008).

    Google Scholar 

  24. L.J. Michot, E. Ferrage, M. Jiménez-Ruiz, M. Boehm, A. Delville, J. Phys. Chem. C 116, 16619 (2012).

    Google Scholar 

  25. V. Marry, P. Turq, T. Cartailler, D. Levesque, J. Chem. Phys. 117, 3454 (2002).

    Google Scholar 

  26. V. Marry, P. Turq, J. Phys. Chem. B 107, 1832 (2003).

    Google Scholar 

  27. N. Malikova, V. Marry, J.F. Dufrêche, P. Turq, Curr. Opin. Colloid Interface Sci. 9, 124 (2004).

    Google Scholar 

  28. B. Rotenberg, V. Marry, J.-F. Dufrêche, N. Malikova, E. Giffaut, P. Turq, C.R. Chim. 10, 1108 (2007).

    Google Scholar 

  29. P.C. Morrow, A.Ö. Yazaydin, M. Krishnan, G.M. Bowers, A.G. Kalinichev, R.J. Kirkpatrick, J. Phys. Chem. C 117, 5172 (2013).

    Google Scholar 

  30. M. Holmboe, I.C. Bourg, J. Phys. Chem. C 118, 1001 (2014).

    Google Scholar 

  31. N. Malikova, E. Dubois, V. Marry, B. Rotenberg, P. Turq, Z. Phys. Chem. 224, 153 (2010).

    Google Scholar 

  32. V. Marry, E. Dubois, N. Malikova, S. Durand-Vidal, S. Longeville, J. Breu, Environ. Sci. Technol. 45, 2850 (2011).

    Google Scholar 

  33. V. Marry, B. Rotenberg, P. Turq, Phys. Chem. Chem. Phys. 10, 4802 (2008).

    Google Scholar 

  34. G. Sposito, R. Prost, Chem. Rev. 82, 553 (1982).

    Google Scholar 

  35. G. Sposito, N.T. Skipper, R. Sutton, S.-H. Park, A.K. Soper, J.A. Greathouse, Proc. Natl. Acad. Sci. U.S.A. 96, 3358 (1999).

    Google Scholar 

  36. B. Rotenberg, V. Marry, N. Malikova, P. Turq, J. Phys. Condens. Matter 22, 284114 (2010).

    Google Scholar 

  37. J.W. Wang, A.G. Kalinichev, R.J. Kirkpatrick, Geochim. Cosmochim. Acta 68, 3351 (2004).

    Google Scholar 

  38. R.J. Kirkpatrick, A.G. Kalinichev, J.W. Wang, Mineral. Mag. 69, 289 (2005).

    Google Scholar 

  39. J.W. Wang, A.G. Kalinichev, R.J. Kirkpatrick, R.T. Cygan, J. Phys. Chem. B 109, 15893 (2005).

    Google Scholar 

  40. J.W. Wang, A.G. Kalinichev, R.J. Kirkpatrick, Geochim. Cosmochim. Acta 70, 562 (2006).

    Google Scholar 

  41. C. Moyne, M. Murad, Transp. Porous Media 62, 333 (2006).

    Google Scholar 

  42. L. Bocquet, E. Charlaix, Chem. Soc. Rev. 39, 1073 (2010).

    Google Scholar 

  43. J.L. Barrat, L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999).

    Google Scholar 

  44. A. Botan, B. Rotenberg, V. Marry, P. Turq, B. Noetinger, J. Phys. Chem. C 115, 16109 (2011).

    Google Scholar 

  45. A. Botan, V. Marry, B. Rotenberg, P. Turq, B. Noetinger, J. Phys. Chem. C 117, 978 (2013).

    Google Scholar 

  46. B. Rotenberg, A.J. Patel, D. Chandler, J. Am. Chem. Soc. 133, 20521 (2011).

    Google Scholar 

  47. L.J. Michot, F. Villiéras, M. François, J. Yvon, R. Le Dred, J.M. Cases Langmuir 10, 3765 (1994).

  48. B.J. Teppen, D.M. Miller, Soil Sci. Soc. Am. J. 70, 31 (2006).

    Google Scholar 

  49. B. Rotenberg, J.-P. Morel, V. Marry, P. Turq, N. Morel-Desrosiers, Geochim. Cosmochim. Acta 73, 4034 (2009).

    Google Scholar 

  50. B. Rotenberg, V. Marry, R. Vuilleumier, N. Malikova, C. Simon, P. Turq, Geochim. Cosmochim. Acta 71, 5089 (2007).

    Google Scholar 

  51. M. Jardat, J.-F. Dufrêche, V. Marry, B. Rotenberg, P. Turq, Phys. Chem. Chem. Phys. 11, 2023 (2009).

    Google Scholar 

  52. I.C. Bourg, G. Sposito, A.C.M. Bourg, J. Colloid Interface Sci. 312, 297 (2007).

    Google Scholar 

  53. T. Hiemstra, P. Venema, W.H.V. Riemsdijk, J. Colloid Interface Sci. 184, 680 (1996).

    Google Scholar 

  54. C. Tournassat, E. Ferrage, C. Poinsignon, L. Charlet, J. Colloid Interface Sci. 273, 23 (2004).

    Google Scholar 

  55. S.V. Churakov, Geochim. Cosmochim. Acta 71, 1130 (2007).

    Google Scholar 

  56. S. Tazi, B. Rotenberg, M. Salanne, M. Sprik, M. Sulpizi, Geochim. Cosmochim. Acta 94, 1 (2012).

    Google Scholar 

  57. X. Liu, X. Lu, M. Sprik, J. Cheng, E.J. Meijer, R. Wang, Geochim. Cosmochim. Acta 117, 180 (2013).

    Google Scholar 

  58. S. Brisard, R.S. Chae, I. Bihannic, L.J. Michot, P. Guttmann, J. Thieme G. Schneider, P.J.M. Monteiro, P. Levitz, Am. Miner. 97, 480 (2012).

    Google Scholar 

  59. S.G. Lee, P. Fenter, K.L. Nagy, N.C. Sturchio, Langmuir 28, 8637 (2012).

    Google Scholar 

  60. J.A. Greathouse, K.L. Johnson, H.C. Greenwell, Minerals 4, 519 (2014).

    Google Scholar 

  61. A. Botan, B. Rotenberg, V. Marry, P. Turq, B. Noetinger, J. Phys. Chem. C 114, 14962 (2010).

    Google Scholar 

  62. P. Giesting, S. Guggenheim, A.F. Koster van Groos, A. Busch, Environ. Sci. Technol. 46, 5623 (2012).

    Google Scholar 

  63. L.M. Hamm, I.C. Bourg, A.F. Wallace, B. Rotenberg, Rev. Mineral. Geochem. 77, 189 (2013).

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the many students and colleagues who have contributed to this work over the past 10 years, in particular, Alexandru Botan, Sami Tazi, Virgnie Marry, Mathieu Salanne, and Pierre Turq, as well as overseas collaborators, in particular, Amish J. Patel and D. Chandler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Rotenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotenberg, B. Water in clay nanopores. MRS Bulletin 39, 1074–1081 (2014). https://doi.org/10.1557/mrs.2014.251

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.251

Navigation