Skip to main content
Log in

Paper as a novel material platform for devices

  • Paper-based technology
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Paper, broadly defined as thin, porous sheets, is currently being used to create novel devices for diagnostics, microfluidics, and electronics that ideally combine low cost and high performance. A “device,” in this context, can be defined as an object that serves to provide information or function to a user in response to input. This issue will highlight some of these novel devices and provide examples of potential applications. We begin with an overview of paper’s unique properties and how these properties lead to a potential for changing the integrated microfluidic and flexible electronics landscape. We then discuss methods for patterning paper as well as specific fluidic operations that are possible on paper. Finally, we conclude with an overview of electronic devices on paper and a brief outlook on the future of this emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. G.M. Whitesides, Nature 442(7101), 368 (2006).

    Article  CAS  Google Scholar 

  2. J.A. Rogers, T. Someya, Y. Huang, Science 327(5973), 1603 (2010).

    Article  CAS  Google Scholar 

  3. J.A. Rogers, D.-H. Kim, Adv. Mater. 20, 4887 (2008).

    Article  CAS  Google Scholar 

  4. D.-H. Kim, Y.-S. Kim, J. Wu, Z. Liu, J. Song, H.-S. Kim, Y.Y. Hauan, K.-C. Hwang, J.A. Rogers. Adv. Mater. 21(36), 3703 (2009).

    Article  CAS  Google Scholar 

  5. M.S. Tswett, Trudy Varshavskogo Obshchestva Estestvoispytatelei Otdelenie Biologii 14, 20 (1905).

    Google Scholar 

  6. G. Whitesides, The Economist 154 (2011).

  7. A.W. Martinez, S.T. Phillips, E. Carrilho, S.W. Thomas, H. Sindi, G.M. Whitesides, Anal. Chem. 80, 3699 (2008).

    Article  CAS  Google Scholar 

  8. G.A. Posthuma-Trumpie, J. Korf, A. van Amerongen, Anal. Bioanal. Chem. 393(2), 569 (2009).

    Article  CAS  Google Scholar 

  9. A.W. Martinez, S.T. Phillips, G.M. Whitesides, Proc. Natl. Acad. Sci. U.S.A 105(50), 19606 (2008).

    Article  CAS  Google Scholar 

  10. J.L. Osborn, B. Lutz, E. Fu, P. Kauffman, D.Y. Stevens, P. Yager, Lab Chip 10(20), 2659 (2010).

    Article  CAS  Google Scholar 

  11. A.R. Rezk, A. Qi, J.R. Friend, W.H. Li, L.Y. Yeo, Lab Chip 12(4), 773 (2012).

    Article  CAS  Google Scholar 

  12. N.R. Pollock, J.P. Rolland, S. Kumar, P.D. Beattie, S. Jain, F. Noubary, V.L. Wong, R.A. Pohlmann, Sci. Transl. Med. 4(152), 129 (2012).

    Article  CAS  Google Scholar 

  13. H. Noh, S.T. Phillips, Anal. Chem. 82(10), 4181 (2010).

    Article  CAS  Google Scholar 

  14. E. Fu, B. Lutz, P. Kauffman, P. Yager, Lab Chip 10(7), 918 (2010).

    Article  CAS  Google Scholar 

  15. E. Fu, P. Kauffman, B. Lutz, P. Yager. Sens. Actuators, B 149(1), 325 (2010).

    Article  CAS  Google Scholar 

  16. D. Tobjörk, R. Österbacka, Adv. Mater. 23(17), 1935 (2011)

    Article  CAS  Google Scholar 

  17. Y. Xiang, Y. Lu, Nat. Chem. 3(9), 697 (2011).

    Article  CAS  Google Scholar 

  18. N.K. Thom, K. Yeung, M.B. Pillion, S.T. Phillips. Lab Chip 12(10), 1768 (2012).

    Article  CAS  Google Scholar 

  19. Y. Xiang, Y. Lu, Anal. Chem. 84(9), 4174 (2012).

    Article  CAS  Google Scholar 

  20. H. Liu, Y. Xiang, Y. Lu, R.M. Crooks, Angew. Chem. Int. Ed. 51(28), 6925 (2012).

    Article  CAS  Google Scholar 

  21. W.W. Yu, I.M.White, Anal. Chem. 82, 9626 (2010).

    Article  CAS  Google Scholar 

  22. A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Angew. Chem. Int. Ed. 46(8), 1318 (2007).

    Article  CAS  Google Scholar 

  23. E. Carrilho, A.W. Martinez, G.M. Whitesides, Anal. Chem. 81(16), 7091 (2009).

    Article  CAS  Google Scholar 

  24. R.H. Müller, D.L. Clegg, Ann. N.Y. Acad. Sci. 53, 1108 (1951).

    Article  Google Scholar 

  25. D.A. Bruzewicz, M. Reches, G.M. Whitesides, Anal. Chem. 80(9), 3387 (2008).

    Article  CAS  Google Scholar 

  26. J. Olkkonen, K. Lehtinen, T. Erho, Anal. Chem. 82(24), 10246 (2010)

    Article  CAS  Google Scholar 

  27. K.Abe, K. Suzuki, D. Citterio, Anal. Chem. 80(18), 6928 (2008).

    Article  CAS  Google Scholar 

  28. M.S. Khan, G. Thouas, W. Shen, G. Whyte, G. Garnier, Anal. Chem. 82(10), 4158 (2010).

    Article  CAS  Google Scholar 

  29. A.W. Martinez, S.T. Phillips, Z. Nei, C.M. Cheng, E. Carrilho, B.J. Wiley, G.M. Whitesides, Lab Chip 10(19), 2499 (2010).

    Article  CAS  Google Scholar 

  30. X. Li, J. Tian, T. Nguyen, W. Shen, Anal. Chem. 80(23), 9131 (2008).

    Article  CAS  Google Scholar 

  31. B.R. Lutz, P. Trinh, C. Ball, E. Fu, P. Yager, Lab Chip 11(24), 4274 (2011).

    Article  CAS  Google Scholar 

  32. E. Carrilho, A.W. Martinez, G.M. Whitesides, Anal. Chem. 81(15), 5990 (2009).

    Article  CAS  Google Scholar 

  33. Z. Nie, F. Deiss, X. Liu, O. Akbulut, G.M. Whitesides, Lab Chip 10(22), 3163 (2010).

    Article  CAS  Google Scholar 

  34. G. Nystroöm, A. Razaq, M. Strømme, L. Nyholm, A. Mihranyan, Nano Lett. 9(10), 3635 (2009).

    Article  CAS  Google Scholar 

  35. A. Mangilal, L. Yuri, V. Kody, Nanotechnol. 17(21), 5319 (2006).

    Article  CAS  Google Scholar 

  36. L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, Y. Cui, Proc. Natl. Acad. Sci. USA 106(51), 21490 (2009).

    Article  CAS  Google Scholar 

  37. M.C. Barr, J.A. Rowehl, R.R. Lunt, J. Xu, A. Wang, C.M. Boyce, S.G. Im, V. Bulović, K.K. Gleason, Adv. Mater. 23(31), 3500 (2011).

    Article  CAS  Google Scholar 

  38. M. Ito, M. Kon, M. Ishizaki, N. Sekine, Proc. IDW/AD 5, 845 (2005).

    Google Scholar 

  39. E. Fortunato, N. Correia, P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, Electron. Dev. Lett. IEEE 29(9), 988 (2008).

    Article  Google Scholar 

  40. F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Appl. Phys. Lett. 84(14), 2673 (2004).

    Article  CAS  Google Scholar 

  41. U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, H. Klauk, Adv. Mater. 23(5), 654 (2011).

    Article  CAS  Google Scholar 

  42. X. Liu, M. Mwangi, X. Li, M. O’Brien, G.M. Whitesides, Lab Chip 11(13), 2189 (2011).

    Article  CAS  Google Scholar 

  43. A.D. Mazzeo, W.B. Kalb, L. Chan, M.G. Killian, J.F. Bloch, B.A. Mazzeo, G.M. Whitesides, Adv. Mater. 24(21), 2850 (2012).

    Article  CAS  Google Scholar 

  44. S.J. Vella, P. Beattie, R. Cademartiri, A. Laromaine, A.W. Martinez, S.T. Phillips, K.A. Mirica, G.M. Whitesides, Anal. Chem. 84(6), 2883 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The guest editors wish to thank the contributors of this issue. J.R. thanks the Bill and Melinda Gates Foundation, DARPA (contract number HR0011-12-2-0010), DFID, and USAID for their support of paper-based diagnostic devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Rolland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolland, J.P., Mourey, D.A. Paper as a novel material platform for devices. MRS Bulletin 38, 299–305 (2013). https://doi.org/10.1557/mrs.2013.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.58

Navigation