Skip to main content
Log in

Hydrophobic surfaces for control and enhancement of water phase transitions

  • Interfacial materials with special wettability
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Surface wettability has emerged as a powerful tool to influence phase change phenomena such as ice formation and steam condensation. Ice mitigation using passive coatings offers tremendous promise; however, there remain several fundamental, durability- and manufacturing-related challenges that need to be addressed to harness the benefits of these coatings. Challenges limiting industrial utilization of such coatings can be classified into three categories: fundamental (frost buildup, non-zero ice adhesion, bulk ice nucleation, variable icing conditions), durability-related (harsh environment resistance, liquid impact resistance, erosion, fatigue), and manufacturing-related (scalability, coating economics). The role of passive surfaces in enhancing condensation heat transfer is a potential game changer in power plant efficiency enhancement; however, the benefits of such coatings will only be realized when durability and manufacturing challenges have been fully addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J.L. Laforte, M.A. Alltaire, J. Laflamme, Atmos. Res. 46, 143 (1998).

    Article  Google Scholar 

  2. C.C. Ryerson, Cold Reg. Sci. Technol. 65, 97 (2011).

    Article  Google Scholar 

  3. T. Laakso, I. Baring-Gould, M. Durstewitz, R. Horbaty, A. Lacroix, E. Peltola, G. Ronsten, L. Tallhaug, T. Wallenius, State of the Art of Wind Energy in Cold Climates (2010); www.vtt.fi/publications/index.jsp.

  4. R. Menini, M. Farzaneh, Surf. Coat. Technol. 203, 1941 (2009).

    Article  CAS  Google Scholar 

  5. H.H.G. Jellinek, J. Colloid. Sci. 14, 268 (1959).

    Article  CAS  Google Scholar 

  6. V.K. Croutch, R.A. Hartley, J. Coat. Technol. 64, 41 (1992).

    CAS  Google Scholar 

  7. C. Laforte, J.C. Carriere, J.L. Laforte, International Workshop on Atmospheric Icing of Structures (Czech Republic, 2002).

  8. L. Cao, A. Jones, V.K. Sikka, J. Wu, D. Gao, Langmuir 25, 12444 (2009).

    Article  CAS  Google Scholar 

  9. A. Daton, H. Doiuk, C. Laforte, S. Kening, J. Adhes. Sci. Technol. 23, 1907 (2009).

    Article  Google Scholar 

  10. L. Mishchenko, B. Hatton, V. Bahadur, J.A. Taylor, T. Krupenkin, J. Aizenberg, ACS Nano 4, 7699 (2010).

    Article  CAS  Google Scholar 

  11. A.J. Mueler, G.H. McKinley, R.E. Cohen, ACS Nano 4, 7048 (2010).

    Article  Google Scholar 

  12. A. Alizadeh, M. Yamada, L. Ri, W. Sheng, S. Otta, S. Zhong, L. Ge, A. Dhinojwala, K. Conway, V. Bahadur, A.J. Vincequerra, B. Stephens, M.L. Blohm, Langmuir 28, 3180 (2012).

    Article  CAS  Google Scholar 

  13. P. Kim, T.S. Wong, J. Alvarenga, M.J. Kreder, W.E. Adorno-Martinez, J. Aizenberg, ACS Nano 6, 6569 (2012).

    Article  CAS  Google Scholar 

  14. H. Stone, ACS Nano 6, 6536 (2012).

    Article  CAS  Google Scholar 

  15. A. Meuler, J.D. Smith, K. Varanasi, J.M. Mabry, G.H. McKinley, R.E. Cohen, ACS Appl. Mater. Interfaces 2, 3100 (2010).

    Article  CAS  Google Scholar 

  16. C. Laforte, A. Beisswenger, International Workshop on Atmospheric Icing of Structures (Montreal, 2005).

  17. M.L. Blohm, “Nanotechnology: A Path to Commercialization at GE,” presented at the MRS Fall Meeting, Boston, MA, 2009.

  18. Y. Boluk, E.M. Burksoy, A.M. Haine, “Adhesion of Freezing Precipitates to Aircraft Surfaces,” Report for Transportation Development Center, Safety and Security Transport Canada, 1996.

  19. J. Ayres, W.H. Simendinger, C.M. Balik, J. Coat. Technol. Res. 4, 463 (2007).

    Article  CAS  Google Scholar 

  20. M. Nosonovsky, V. Hejazi, ACS Nano 6, 8488 (2012).

    Article  CAS  Google Scholar 

  21. K. Varanasi, T. Deng, J.D. Smith, M. Hsu, N. Bhate, Appl. Phys. Lett. 97, 234102 (2010).

    Article  Google Scholar 

  22. D. Quéré, Ann. Rev. Matls. Res. 38, 71 (2008).

    Article  Google Scholar 

  23. A. Alizadeh, V. Bahadur, S. Zhong, W. Shang, R. Li, J. Ruud, M. Yamada, L. Ge, A. Dhinojwala, M. Sohal, Appl. Phys. Lett. 100, 111601 (2012).

    Article  Google Scholar 

  24. A. Alizadeh, V. Bahadur, W. Shang, Y. Zhu, D. Buckley, A. Dhinojwala, M. Sohal, Langmuir (2013), in press.

  25. P. Tourkine, M. LeMerrer, D. Quéré, Langmuir 25, 7214 (2009).

    Article  CAS  Google Scholar 

  26. P.W. Wilson, W. Lu, H. Xu, P. Kim, M.J. Kreder, J. Alvarenga, J. Aizenberg, Phys. Chem. Chem. Phys. 15, 581 (2013).

    Article  CAS  Google Scholar 

  27. M. Yamada, A. Alizadeh, B. Moore, ASCR Leadership Computing Challenge—Department of Energy (Oak Ridge National Laboratory, 2011).

  28. V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, New York, 1999).

    Google Scholar 

  29. S.S. Finnicum, J.W. Westwater, Int. J. Heat Mass Transfer 32, 1541 (1989).

    Article  CAS  Google Scholar 

  30. F.L.A. Ganzevles, PhD thesis, Eindhoven University of Technology, The Netherlands (2002).

  31. B.-J. Chung, M.C. Kim, C.M. Ahmadinejad, J. Mech. Sci. Technol. 22, 127 (2008).

    Article  Google Scholar 

  32. D.A. McNeil, “EPSRC, UK Department of Trade and Industry Report” (GR/K82475/01, 1999).

  33. C.H. Chen, Q.J. Cai, C.L. Tsai, C.L. Chen, G.Y. Xiong, Y. Yu, Z.F. Ren, Appl. Phys. Lett. 90, 173108 (2007).

    Article  Google Scholar 

  34. J.A. Ruud, K.K. Varanasi, N. Bhate, M.M. Gentleman, M. Manoharan, “Nanoengineered, Superhydrophobic Surfaces for Steam Turbines and Condensers: Project Narrative,” NIST ATP Cooperative Agreement Number 70NANB7H7009 (2007).

  35. F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transf. (Wiley, New York, ed. 5, 2001), pp. 615 – 619.

    Google Scholar 

  36. L. Yin, L. Zhu, Q. Wang, J. Ding, Chen, ACS Appl. Mater. Interfaces 3, 1254 (2011).

    Article  CAS  Google Scholar 

  37. S. Anand, A.T. Paxson, R. Dhiman, J.D. Smith, K.K. Varanasi, ACS Nano 6, 10122 (2012).

    Article  CAS  Google Scholar 

  38. J.A. Ruud, A. Kulkarni, L. Ajdelsztajn, V. Bahadur, L. Leblanc, H. Piao, J. Sanchez, S. Sivaramakrishnan, M. Soare, T. Yosenick, M. Demiroglu, M. Manoharan, M. Blohm, “Nanoengineered, Superhydrophobic Surfaces for Steam Turbines and Condensers: Final Report,” NIST ATP Cooperative Agreement Number 70NANB7H7009, March 2011.

  39. M.M. Gentleman, J.A. Ruud, M. Manoharan, US Patent 7,892,660B2, February 22, 2011.

  40. US Department of Energy, Annual Energy Review (2009); http://www.eia.gov/cneaf/electricity/page/eia860.html.

Download references

Acknowledgements

The authors are very thankful to Margaret Blohm, Mohan Manoharan, Kevin McEvoy, Molly Gentleman, Nitin Bhate, Kripa Varanasi, Mike Ostrowski, Sherif Mohammed, and Scott Miller for their assistance in this work and helpful discussions. This work was performed under the support of the U.S. Department of Commerce, National Institute of Standards and Technology, Advanced Technology Program, Cooperative Agreement Number 70NANB7H7009, and the GE Advanced Technology Nanotechnology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azar Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alizadeh, A., Bahadur, V., Kulkarni, A. et al. Hydrophobic surfaces for control and enhancement of water phase transitions. MRS Bulletin 38, 407–411 (2013). https://doi.org/10.1557/mrs.2013.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.104

Navigation