Skip to main content
Log in

Contributions of the embedded-atom method to materials science and engineering

  • Three decades of many-body potentials in materials research
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Many-body potentials were introduced in the early 1980s and have become a workhorse for the simulation of materials, especially metallic systems. The physical motivations for the main classes of the various many-body potentials are summarized, and the advantages of this approach are discussed. Some current examples related to grain growth, stress generation in thin films, shock loading, and nanowire deformation are presented to illustrate the continuing value of these approaches. Finally, some of the approaches that have been introduced in subsequent years are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. M.S. Daw, S.M. Foiles, M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993).

    Google Scholar 

  2. A.E. Carlsson, in Solid State Physics, vol. 43, H. Ehrenreich, R. Turnbull, Eds. (Academic Press, San Diego, 1990).

    Google Scholar 

  3. M.J. Stott, E. Zaremba, Phys. Rev. B 22, 1564 (1980).

    Google Scholar 

  4. J.K. Nørskov, Phys. Rev. B 26, 2875 (1982).

    Google Scholar 

  5. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Google Scholar 

  6. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Google Scholar 

  7. M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Google Scholar 

  8. F. Ercolessi, M. Parrinello, E. Tosatti, Philos. Mag. A 58 (1), 213 (1988).

    Google Scholar 

  9. E.A. Holm, S.M. Foiles, Science 328 (5982), 1138 (2010).

    Google Scholar 

  10. D. Olmsted, E.A. Holm, S.M. Foiles, Acta Mater. 57, 3704 (2009).

    Google Scholar 

  11. C.W. Pao, S.M. Foiles, E.B. Webb, D.J. Srolovitz, J.A. Floro, Phys. Rev. Lett. 99, 036102 (2007).

    Google Scholar 

  12. E. Chason, B.W. Sheldon, L.B. Freund, J.A. Floro, S.J. Hearne, Phys. Rev. Lett. 88 (15), 156103 (2002).

    Google Scholar 

  13. E.M. Bringa, A. Caro, Y. Wang, M. Victoria, J. McNaney, B.A. Remington, R.F. Smith, B.R. Torralva, H. Van Swyhenhoven, Science 309, 1838 (2005).

    Google Scholar 

  14. E.M. Bringa, K. Rosolankova, R.E. Rudd, B.A. Remington, J.S. Wark, M. Duchaineau, D.H. Kalantar, J. Hawreliak, J. Belak, Nat. Mater. 5, 805 (2006).

    Google Scholar 

  15. R.E. Rudd, T.C. Germann, B.A. Remington, J.S. Wark, MRS Bull. 35, 999 (2010).

    Google Scholar 

  16. C.R. Weinberger, W. Cai, Scripta Mater. 64 (6), 529 (2011).

    Google Scholar 

  17. J.R. Greer, W.D. Nix, Phys. Rev. B 73 (24), 245410 (2006).

    Google Scholar 

  18. S.I. Rao, D.M. Dimiduck, T.A. Parthasarathy, M.D. Uchic, M. Tang, C. Woodward, Acta Mater. 56, 3245 (2008).

    Google Scholar 

  19. S.-W. Lee, W.D. Nix, Mater. Sci. Eng., A 527, 1903 (2010).

    Google Scholar 

  20. M.I. Baskes, Phys. Rev. Lett. 59 (23), 2666 (1987).

    Google Scholar 

  21. M.I. Baskes, J.S. Nelson, A.F. Wright, Phys. Rev. B 40 (9), 6085 (1989).

    Google Scholar 

  22. M.I. Baskes, Phys. Rev. B 46 (5), 2727 (1992).

    Google Scholar 

  23. M.I. Baskes, Modell. Simul. Mater. Sci. Eng. 5, 149 (1997).

    Google Scholar 

  24. J.G. Swadener, M.I. Baskes, M. Nastasi, Phys. Rev. Lett. 89 (8), 085503 (2002).

    Google Scholar 

  25. H. Huang, N.M. Ghoniem, J.K. Wong, M.I. Baskes, Modell. Simul. Mater. Sci. Eng. 3, 615 (1995).

    Google Scholar 

  26. G. Wang, M.A. Van Hove, P.N. Ross, M.I. Baskes, Prog. Surf. Sci. 79, 28 (2005).

    Google Scholar 

  27. R. Ravelo, M.I. Baskes, Phys. Rev. Lett. 79, 2482 (1997).

    Google Scholar 

  28. M.I. Baskes, K. Muralidharan, M. Stan, S.M. Valone, F.J. Cherne, JOM 55, 41 (2003).

    Google Scholar 

  29. D.G. Pettifor, Phys. Rev. Lett. 63, 2480 (1989).

    Google Scholar 

  30. J.A. Moriarty, Phys. Rev. B 42, 1609 (1990).

    Google Scholar 

  31. M.W. Finnis, Prog. Mater Sci. 52, 133 (2007).

    Google Scholar 

  32. J.A. Moriarty, L.X. Benedict, J.N. Glosli, R.Q. Hood, D.A. Orlikowski, M.V. Patel, P. Soderlind, F.H. Streitz, M.J. Tang, L.H. Yang, J. Mater. Res. 21 (3), 563 (2006).

    Google Scholar 

  33. R. Gröger, A.G. Bailey, V. Vitek, Acta Mater. 56, 5401 (2008).

    Google Scholar 

  34. R. Gröger, V. Racheria, J.L. Bassani, V. Vitek, Acta Mater. 56, 5412 (2008).

    Google Scholar 

  35. R. Gröger, V. Vitek, Acta Mater. 56, 5426 (2008).

    Google Scholar 

  36. M.I. Baskes, S.G. Srinivasan, S.M. Valone, R.G. Hoagland, Phys. Rev. B 75 (9), 094113 (2007).

    Google Scholar 

  37. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04–94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Foiles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foiles, S.M., Baskes, M.I. Contributions of the embedded-atom method to materials science and engineering. MRS Bulletin 37, 485–491 (2012). https://doi.org/10.1557/mrs.2012.93

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.93

Navigation