Skip to main content
Log in

Scanning transmission electron microscopy: Seeing the atoms more clearly

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article shows how the scanning transmission electron microscope provides a Z-contrast image (where Z is atomic number) that is often directly interpretable and can show higher resolution than a phase-contrast image. It represents an incoherent mode of imaging, similar to that described by Lord Rayleigh for the optical microscope over a century ago. Today, resolution has reached a half Ångstrom, and spectroscopic analysis of individual atomic columns, even of individual atoms in two-dimensional materials, has become possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. E. Abbe, Archiv. f. Mik. Anat. 9, 413 (1873).

    Article  Google Scholar 

  2. Lord Rayleigh, Philos. Mag. 42, 167 (1896).

  3. M. Knoll, E. Ruska, Z. Phys. 78, 318 (1932).

  4. M. von Ardenne, Z. Phys. A: Hadrons Nucl. 112, 744 (1939).

  5. D.J. Smith, Rep. Prog. Phys. 60, 1513 (1997).

  6. A.V. Crewe, Science 154, 729 (1966).

  7. H. Müller, S. Uhlemann, P. Hartel, M. Haider, Microsc. Microanal. 12, 442 (2006).

  8. J. Wall, J. Langmore, M. Isaacson, A. Crewe, Proc. Natl. Acad. Sci. U.S.A. 71, 1 (1974).

  9. E.W. Müller, J. Appl. Phys. 27, 474 (1956).

  10. M. Isaacson, D. Kopf, M. Ohtsuki, M. Utlaut, Ultramicroscopy 4, 101 (1979).

  11. M. Isaacson, D. Kopf, M. Utlaut, N.W. Parker, A. Crewe, Proc. Natl. Acad. Sci. U.S.A. 74, 1802 (1977).

  12. A. Crewe, M. Isaacson, D. Johnson, Nature 231, 262 (1971).

  13. A.V. Crewe, Adv. Imaging Electron Phys. 159, 1 (2009).

  14. A. Engel, J.W. Wiggins, D.C. Woodruff, J. Appl. Phys. 45, 2739 (1974).

  15. A.M. Donald, A.J. Craven, Philos. Mag. A 39, 1 (1979).

  16. M.M.J. Treacy, A. Howie, C.J. Wilson, Philos. Mag. A 38, 569 (1978).

  17. M.M.J. Treacy, A. Howie, S.J. Pennycook, in Electron Microscopy and Analysis, T. Mulvey, Ed. Inst. Phys. Conf. Ser. No. 52 (1980), pp. 261–266.

  18. S.J. Pennycook, A. Howie, Philos. Mag. A 41, 809 (1980).

  19. S.J. Pennycook, J. Narayan, Appl. Phys. Lett. 45, 385 (1984).

  20. S.J. Pennycook, L.A. Boatner, Nature 336, 565 (1988).

  21. S.J. Pennycook, D.E. Jesson, Phys. Rev. Lett. 64, 938 (1990).

  22. S.J. Pennycook, D.E. Jesson, Ultramicroscopy 37, 14 (1991).

  23. D.E. Jesson, S.J. Pennycook, Proc. R. Soc. London, Ser. A 441, 261 (1993).

  24. D. Jesson, S. Pennycook, Proc. Math. Phys. Sci. 449, 273 (1995).

  25. S.J. Pennycook, P.D. Nellist, in Impact of Electron and Scanning Probe Microscopy on Materials Research, D.G. Rickerby, U. Valdrè, G. Valdrè, Eds. (Kluwer, Dordrecht, the Netherlands, 1999) pp. 161–207.

  26. S.J. Pennycook, N.D. Browning, M.M. McGibbon, A.J. McGibbon, D.E. Jesson, M.F. Chisholm, Philos. Trans. R. Soc. London, Ser. A 354, 2619 (1996).

  27. A.J. McGibbon, S.J. Pennycook, J. Angelo, Science 269, 519 (1995).

  28. M.F. Chisholm, N.D. Browning, S.J. Pennycook, R. Jebasinski, S. Mantl, Appl. Phys. Lett. 64, 3608 (1994).

  29. D.E. Jesson, S.J. Pennycook, J. Baribeau, Phys. Rev. Lett. 66, 750 (1991).

  30. P.J. Steinhardt, H.C. Jeong, K. Saitoh, M. Tanaka, E. Abe, A.P. Tsai, Nature 396, 55 (1998).

  31. Y. Yan, S.J. Pennycook, Nature 403, 266 (2000).

  32. E. Abe, K. Saitoh, H. Takakura, A. Tsai, P. Steinhardt, H.C. Jeong, Phys. Rev. Lett. 84, 4609 (2000).

  33. Y. Yan, S.J. Pennycook, Phys. Rev. Lett. 86, 1542 (2001).

  34. E. Abe, Y. Yan, S.J. Pennycook, Nat. Mater. 3, 759 (2004).

  35. P. Bak, Phys. Rev. Lett. 56, 861 (1986).

  36. R. Penrose, Bull. Inst. Math. Appl. 10, 266.

  37. N.D. Browning, M.F. Chisholm, S.J. Pennycook, Nature 366, 143 (1993).

  38. S.J. Pennycook, M. Varela, A.R. Lupini, M.P. Oxley, M.F. Chisholm, J. Electron Microsc. 58, 87 (2009).

  39. P.E. Batson, Nature 366, 727 (1993).

  40. D.A. Muller, Y. Tzou, R. Raj, J. Silcox, Nature 366, 725 (1993).

  41. E.M. James, N.D. Browning, Ultramicroscopy 78, 125 (1999).

  42. E.M. James, N.D. Browning, A.W. Nicholls, M. Kawasaki, S. Stemmer, J. Electron Microsc. 47, 561 (1998).

  43. R.P. Feynman, J. Microelectromech. Syst. 1, 60 (1992).

  44. O. Scherzer, Optik 2, 114 (1947).

  45. V. Ronchi, Appl. Opt. 3, 437 (1964).

  46. J. Cowley, Ultramicroscopy 4, 413 (1979).

  47. A.R. Lupini, P. Wang, P.D. Nellist, A.I. Kirkland, S.J. Pennycook, Ultramicroscopy 110, 891 (2010).

  48. H. Sawada, T. Sannomiya, F. Hosokawa, T. Nakamichi, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, K. Takayanagi, in EMC 2008, S. Richter, A. Schwedt, Eds. (Springer-Verlag, Berlin, 2008), vol. 1, p. 1467.

  49. M. Haider, S. Uhlemann, H. Rose, K. Urban, Nature 392, 768 (1998).

  50. P.E. Batson, N. Dellby, O.L. Krivanek, Nature 418, 617 (2002).

  51. A.R. Lupini, S.J. Pennycook, Ultramicroscopy 96, 313 (2003).

  52. S.J. Pennycook, A.R. Lupini, J.R. McBride, S.J. Rosenthal, O.L. Krivanek, L. Wang, P.D. Nellist, S.T. Pantelides, A. Yahil, N. Dellby, Z. Metallkd. 94, 350 (2003).

  53. P. Voyles, J. Grazul, D. Muller, Ultramicroscopy 96, 251 (2003).

  54. P. Voyles, D. Muller, J. Grazul, P. Citrin, H. Gossmann, Nature 416, 826 (2002).

  55. M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Phys. Rev. Lett. 92, 95502 (2004).

  56. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides, S.J. Pennycook, Science, 305 1741 (2004).

  57. N. Shibata, G.S. Painter, P.F. Becher, S.J. Pennycook, Appl. Phys. Lett. 89, 051908 (2006).

  58. N. Shibata, S.J. Pennycook, T.R. Gosnell, G.S. Painter, W.A. Shelton, P.F. Becher, Nature 428, 730 (2004).

  59. J.C. Idrobo, M.P. Oxley, W. Walkosz, R.F. Klie, S. Ogut, B. Mikijelj, S.J. Pennycook, S.T. Pantelides, Appl. Phys. Lett. 95, 164101 (2009).

  60. A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Proc. Natl. Acad. Sci. U.S.A. 103, 3044 (2006).

  61. K. van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook, Appl. Phys. Lett. 87, 034104 (2005).

  62. H. Yurdakul, J.C. Idrobo, S.J. Pennycook, S. Turan, Scripta Mater. 65, 656 (2011).

  63. S.H. Oh, K. van Benthem, S.I. Molina, A.Y. Borisevich, W. Luo, P. Werner, N.D. Zakharov, D. Kumar, S.T. Pantelides, S.J. Pennycook, Nano Lett. 8, 1016 (2008).

  64. S.J. Pennycook, M.F. Chisholm, A.R. Lupini, M. Varela, A.Y. Borisevich, M.P. Oxley, W.D. Luo, K. van Benthem, S.H. Oh, D.L. Sales, S.I. Molina, J. Garcia-Barriocanal, C. Leon, J. Santamaria, S.N. Rashkeev, S.T. Pantelides, Philos. Trans. R. Soc. London, Ser. A 367, 3709 (2009).

  65. C. Jia, M. Lentzen, K. Urban, Science 299, 870 (2003).

  66. N. Shibata, M.F. Chisholm, A. Nakamura, S.J. Pennycook, T. Yamamoto, Y. Ikuhara, Science 316, 82 (2007).

  67. A.Y. Borisevich, H.J. Chang, M. Huijben, M.P. Oxley, S. Okamoto, M.K. Niranjan, J.D. Burton, E.Y. Tsymbal, Y.H. Chu, P. Yu, R. Ramesh, S.V. Kalinin, S.J. Pennycook, Phys. Rev. Lett. 105, 087204 (2010).

  68. O. Scherzer, J. Appl. Phys. 20, 20 (1949).

  69. O.L. Krivanek, P.D. Nellist, N. Dellby, M. Murfitt, Z. Szilagyi, Ultramicroscopy 96, 229 (2003).

  70. M. Haider, S. Uhlemann, J. Zach, Ultramicroscopy 81, 163 (2000).

  71. R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen, Phys. Rev. Lett. 102, 96101 (2009).

  72. H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama Y. Kondo, K. Takayanagi, J. Electron Microsc. 58, 357 (2009).

  73. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides S.J. Pennycook, Nature 464, 571 (2010).

  74. O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga, V. Nicolosi, Ultramicroscopy 110, 935 (2010).

  75. K. Suenaga, M. Koshino, Nature 468, 1088 (2010).

  76. W. Zhou, J. Lee, J. Nanda, S.T. Pantelides, S.J. Pennycook, J.-C. Idrobo, Nat. Nanotechnol. 7, 161 (2012).

  77. J. Lee, W. Zhou, J.C. Idrobo, S.J. Pennycook, S.T. Pantelides, Phys. Rev. Lett. 107, 85507 (2011).

  78. S. Chung, S. Choi, T. Yamamoto, Y. Ikuhara, Phys. Rev. Lett. 100, 125502 (2008).

  79. S.J. Pennycook, in Scanning Transmission Electron Microscopy S.J. Pennycook, P.D. Nellist, Eds. (Springer, New York, 2011), pp. 1–90.

  80. M. Varela, J. Gazquez, S.J. Pennycook, MRS Bull. 37, 29 (2012).

  81. S.S. Bals, S.S. Van Aert, C.P.C. Romero, K.K. Lauwaet, M.J.M. Van Bael B.B. Schoeters, B.B. Partoens, E.E. Yücelen, P.P. Lievens, G.G. Van Tendeloo, Nat. Commun. 3, 897 (2012).

  82. J.H. Warner, E.R. Margine, M. Mukai, A.W. Robertson, F. Giustino, A.I. Kirkland Science 337, 209 (2012).

  83. T.J. Pennycook, J.R. McBride, S.J. Rosenthal, S.J. Pennycook, S.T. Pantelides, Nano Lett. 12, 3038 (2012).

  84. S.J. Pennycook, Scanning 30, 287 (2008).

  85. L. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier G. Jacopin, M. Tchernycheva, L. Rigutti, F. Julien, Nano Lett. 11, 568 (2011).

  86. L.R. Parent, D.B. Robinson, T.J. Woehl, W.D. Ristenpart, J.E. Evans N.D. Browning, I. Arslan, ACS Nano 6 3589 (2012).

  87. N. De Jonge, F.M. Ross, Nature Nanotech. 6, 695 (2011).

  88. J. Verbeeck, H. Tian, A. Béché, Ultramicroscopy 113, 83 (2012).

  89. O.L. Krivanek, J.P. Ursin, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, Phil. Trans. R. Soc. A, 367, 3683 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the US Department of Energy for its many decades of support of electron microscopy, particularly the development of STEM by Albert Crewe and colleagues, and the author’s own support for the past 30 years. I would like to acknowledge fruitful interactions with all my colleagues over the years, in particular L.M. Brown, A. Howie, D.E. Jesson, N.D. Browning, M.F. Chisholm, P.D. Nellist, A.R. Lupini, M. Varela, A.Y. Borisevich, O.L. Krivanek, M.P. Oxley, S.T. Pantelides, and J.-C. Idrobo. This article was written with support from the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Pennycook.

Additional information

This article is based on a presentation by Stephen J. Pennycook when he received the Innovation in Materials Characterization Award for his “pioneering use of aberration-corrected Z-contrast scanning transmission electron microscopy in the characterization of materials at the atomic scale” at the MRS Spring Meeting in 2012 in San Francisco, CA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennycook, S.J. Scanning transmission electron microscopy: Seeing the atoms more clearly. MRS Bulletin 37, 943–951 (2012). https://doi.org/10.1557/mrs.2012.239

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.239

Navigation