Skip to main content

Advertisement

Log in

First-principles design of next-generation nuclear fuels

  • High-Performance Computing for Materials Design to Advance Energy Science
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The behavior of nuclear fuel in a reactor is a complex phenomenon that is influenced by a large number of materials properties, which include thermomechanical strength, chemical stability, microstructure, and defects. As a consequence, a comprehensive understanding of the fuel material behavior presents a significant modeling challenge, which must be mastered to improve the efficiency and reliability of current nuclear reactors. It is also essential to the development of advanced fuel materials for next-generation reactors. Over the last two decades, the use of density functional theory (DFT) has greatly contributed to our understanding by providing profound information on nuclear fuel materials, ranging from fundamental properties of f-electron systems to thermomechanical materials properties. This article briefly summarizes the main achievements of this first-principles computational methodology as it applies to nuclear fuel materials. Also, the current status of first-principles modeling is discussed, considering existing limitations and drawbacks such as size limitation and the added complexity associated with high temperature analysis. Finally, the future role of DFT modeling in the nuclear fuels industry is put into perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998).

    Article  CAS  Google Scholar 

  2. K.N. Kudin, G.E. Scuseria, R.L. Martin, Phys. Rev. Lett. 89, 266402 (2002).

    Article  CAS  Google Scholar 

  3. R. Laskowski, G.K.H. Madsen, P. Blaha, K. Schwarz, Phys. Rev. B 69, 140408(R) (2004).

    Article  CAS  Google Scholar 

  4. Y. Yun, H. Kim, H. Kim, K. Park, Nucl. Eng. Technol. 37, 293 (2005).

    CAS  Google Scholar 

  5. I.D. Prodan, G.E. Scuseria, R.L. Martin, Phys. Rev. B 76, 033101 (2007).

    Article  CAS  Google Scholar 

  6. Y. Yun, H. Kim, H. Lim, K. Park, J. Korean Phys. Soc. 50, 1285 (2007).

    Article  CAS  Google Scholar 

  7. B. Amadon, F. Jollet, M. Torrent, Phys. Rev. B 77, 155104 (2008).

    Article  CAS  Google Scholar 

  8. B. Dorado, B. Amadon, M. Freyss, M. Bertolus, Phys. Rev. B. 79, 235125 (2009).

    Article  CAS  Google Scholar 

  9. D.A. Anderson, J. Lezama, B.P. Uberuaga, C. Deo, S.D. Conradson, Phys. Rev. B 79, 024110 (2009).

    Article  CAS  Google Scholar 

  10. M. Freyss, T. Petit, J.P. Crocombette, J. Nucl. Mater. 347, 44 (2005).

    Article  CAS  Google Scholar 

  11. M. Freyss, N. Vergnet, T. Petit, J. Nucl. Mater. 352, 144 (2006).

    Article  CAS  Google Scholar 

  12. Y. Yun, H. Kim, H. Kim, K. Park, J. Nucl. Mater. 378, 40 (2008).

    Article  CAS  Google Scholar 

  13. Y. Yun, O. Eriksson, P.M. Oppeneer, J. Nucl. Mater. 385, 510 (2009).

    Article  CAS  Google Scholar 

  14. Y. Yun, O. Eriksson, P.M. Oppeneer, J. Nucl. Mater. 385, 364 (2009).

    Article  CAS  Google Scholar 

  15. Y. Yun, P.M. Oppeneer, H. Kim, K. Park, Act. Mater. 57, 1655 (2009).

    Article  CAS  Google Scholar 

  16. M. Iwasawa, Y. Chen, Y. Kaneta, T. Ohnuma, H.-Y. Geng, M. Kinoshita, Mater. Trans. 47, 2651 (2006).

    Article  CAS  Google Scholar 

  17. F. Gupta, G. Brillant, A. Pasturel, Philos. Mag. 87, 2561 (2007).

    Article  CAS  Google Scholar 

  18. P. Nerikar, T. Watanabe, J.S. Tulenko, S.R. Phillpot, S.B. Sinnott, J. Nucl. Mater. 384, 61 (2009).

    Article  CAS  Google Scholar 

  19. B. Dorado, M. Freyss, G. Martin, Eur. Phys. J. B 69, 203 (2009).

    Article  CAS  Google Scholar 

  20. N. Vigier, C. Den Auwer, C. Fillaux, A. Maslennikov, H. Noël, J. Roques, D.K. Shuh, E. Simoni, T. Tyliszczak, P. Moisy, Chem. Mater. 20, 3199 (2008).

    Article  CAS  Google Scholar 

  21. M. Freyss, Phys. Rev. B 81, 014101 (2010).

    Article  CAS  Google Scholar 

  22. Q. Yin, S.Y. Savrasov, Phys. Rev. Lett. 100, 225504 (2008).

    Article  CAS  Google Scholar 

  23. M.N. Huda, A.K. Ray, Phys. Rev. B 72, 085101 (2005).

    Article  CAS  Google Scholar 

  24. F.N. Skomurski, R.C. Ewing, A.L. Rohl, J.D. Gale, U. Becker, Am. Mineral. 91, 1761 (2006).

    Article  CAS  Google Scholar 

  25. S.L. Dudarev, D. Nguyen Manh, A.P. Sutton, Philos. Mag. B 75, 613 (1997).

    Article  CAS  Google Scholar 

  26. Y. Baer, J. Schoenes, Solid State Commun. 33, 885 (1980).

    Article  CAS  Google Scholar 

  27. K.N. Kudin, G.E. Scuseria, R.L. Martin, Phys. Rev. Lett. 89, 266402 (2002).

    Article  CAS  Google Scholar 

  28. R. Atta-Fynn, A.K. Ray, Europhys. Lett. 85, 27008 (2009).

    Article  CAS  Google Scholar 

  29. L. Petit, A. Svane, Z. Szotek, W.M. Temmerman, Science 301, 498 (2003).

    Article  CAS  Google Scholar 

  30. L. Petit, A. Svane, Z. Szotek, W.M. Temmerman, G.M. Stocks, Phys. Rev. B 81, 045108 (2010).

    Article  CAS  Google Scholar 

  31. R.H. Petrucci, W.S. Harwood, G. Herring, General Chemistry: Principles and Modern Applications (Prentice Hall, New Jersey, 2001).

    Google Scholar 

  32. F. Zhou, V. Ozolinš , “Crystal field and magnetic structure of UO2”; http://lanlarxiv.org/abs/1006.3988

  33. Hj. Matzke, Diffusion Processes in Nuclear Materials (North Holland, Amsterdam, 1992).

    Google Scholar 

  34. H. Kim, K. Park, Y. Yun, B.G. Kim, H.J. Ryu, K.C. Song, Y.S. Choo, K.P. Hong, Ann. Nucl. Energy 34, 153 (2007).

    Article  CAS  Google Scholar 

  35. Hj. Matzke, J. Chem. Soc. Faraday. Trans. 2 83, 1121 (1987).

    Article  Google Scholar 

  36. X. Dai, S.Y. Savrasov, G. Kotliar, A. Migliori, H. Ledbetter, E. Abrahams, Science 300, 953 (2003).

    Article  CAS  Google Scholar 

  37. K. Parlinski, PHONON software, Cracow, Poland, 2005.

  38. P. Piekarz, K. Parlinski, P.T. Jochym, A.M. Oles, J.-P. Sanchez, J. Rebizant Phys. Rev. B 72, 014521 (2005).

    Article  CAS  Google Scholar 

  39. K. Yamada, K. Kurosaki, M. Uno, S. Yamanaka, J. Alloys Compd. 307, 10 (2000).

    Article  CAS  Google Scholar 

  40. P.H. Chen, X.L. Wang, X.C. Lai, G. Li, B.Y. Ao, Y. Long, J. Nucl. Mater. 404, 6 (2010).

    Article  CAS  Google Scholar 

  41. N.D. Mermin, Phy. Rev. 137, A1441 (1965).

    Article  Google Scholar 

  42. T.R. Mattsson, N. Sandberg, R. Armiento, A.E. Mattsson, Phys. Rev. B 80, 224104 (2009).

    Article  CAS  Google Scholar 

  43. S. Root, R.J. Magyar, J.H. Carpenter, D.L. Hanson, T.R. Mattsson, Phys. Rev. Lett. 105, 085501 (2010).

    Article  CAS  Google Scholar 

  44. K. Govers, S. Lemehov, M. Hou, M. Verwerft, J. Nucl. Mater. 395, 131 (2009).

    Article  CAS  Google Scholar 

  45. VASP, http://cms.mpi.univie.ac.at/vasp.

  46. CP2K, http://cp2k.berlios.de.

  47. D.R. Trinkle, C. Woodward, Science 310, 1665 (2005).

    Article  CAS  Google Scholar 

  48. R.W. Grimes, R.J.M. Konings, L. Edwards, Nat. Mater. 7, 683 (2008).

    Article  CAS  Google Scholar 

  49. H. Muta, K. Kurosaki, M. Uno, S. Yamanaka, J. Mater. Sci. 43, 6429 (2008).

    Article  CAS  Google Scholar 

  50. E.A. Kotomin, R.W. Grimes, Y. Mastrikov, N.J. Ashley, J. Phys. Condens. Matter 19, 106208 (2007).

    Article  CAS  Google Scholar 

  51. Y. Lu, B.-T. Wang, R.-W. Li, H. Shi, P. Zhang, J. Nucl. Mater. (2011), in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younsuk Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, Y., Oppeneer, P.M. First-principles design of next-generation nuclear fuels. MRS Bulletin 36, 178–184 (2011). https://doi.org/10.1557/mrs.2011.34

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.34

Navigation