Skip to main content

Advertisement

Log in

Developing high-capacity hydrogen storage materials via quantum simulations

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Hydrogen is considered by some to be a promising non-CO2-emitting energy carrier for the future. However, to realize a hydrogen economy, there are several technological barriers to overcome. Currently, safe and efficient storage of hydrogen is a bottleneck in the practical usage of hydrogen for fuels. In this article, we present a review on the first-principles computational approach in designing hydrogen storage materials with an emphasis on molecular hydrogen storage in nanostructured materials. Given the limitation of pristine nanostructures for room-temperature hydrogen storage, the strategy of decorating the backbone structure of the nanostructure with transition metal atoms in order to enhance the hydrogen adsorption energy is addressed, and the interplay between the Coulomb interactions and the so-called Kubas interaction (nondissociative weak chemisorption via electron donation and back-donation channels) has been studied. The influence of electron spin on the hydrogen binding energy, problems of metal clustering and oxidation, and the structural instability that may arise during hydrogen sorption are also discussed. We address the limitations and challenges in the development of high-capacity hydrogen storage materials and provide perspectives for how computational materials design can help cope with those problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. * The hydrogen spillover refers to a dissociative and diffusive adsorption of hydrogen assisted by metal catalysts. H2 is bound to a metal catalyst surface through a dissociative mechanism that splits the hydrogen molecule into two H atoms, and those H atoms diffuse down onto the surface of the sorption materials.

  2. ** Similar to other high-surface area materials, H2 is bound to the constituent atoms of the MOF basically through weak van der Waals interactions. Exposed open metal sites in MOFs could serve as stronger binding centers of hydrogen. Under low temperature and high pressure, a substantial amount of H2 gas molecules may be stored in the void volume of the MOF as well. If the spillover phenomenon should be in effect, additional storage by hydrogen atoms attached to the inner surface of the MOF would be possible.

References

  1. L. Schlapbach, A. Zuttel, Nature 414, 353 (2001).

    Article  CAS  Google Scholar 

  2. S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, Catal. Today 120, 246 (2007).

    Article  CAS  Google Scholar 

  3. G.J. Kubas, J. Organomet. Chem. 635, 37 (2001).

    Article  CAS  Google Scholar 

  4. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  CAS  Google Scholar 

  5. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003).

    Article  CAS  Google Scholar 

  6. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999).

    Article  CAS  Google Scholar 

  7. T.H. Dunning, J. Phys. Chem. A 104, 9062 (2000).

    Article  CAS  Google Scholar 

  8. J. Cha, S. Lim, C.H. Choi, M.H. Cha, N. Park, Phys. Rev. Lett. 103, 216102 (2009).

    Article  CAS  Google Scholar 

  9. Y.H. Kim, Y.Y. Sun, W.I. Choi, J. Kang, S.B. Zhang, Phys. Chem. Chem. Phys. 11, 11400 (2009).

    Article  CAS  Google Scholar 

  10. M. Head-Gordon, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 153, 503 (1988).

    Article  CAS  Google Scholar 

  11. J. Čížek , J. Chem. Phys. 45, 4256 (1966).

    Article  Google Scholar 

  12. W.M.C. Foulkes, L. Mitas, R.J. Needs, G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).

    Article  CAS  Google Scholar 

  13. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  14. M. Bajdich, F.A. Reboredo, P.R.C. Kent, Phys. Rev. B 82, 081405 (2010).

    Article  CAS  Google Scholar 

  15. L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, G. Kresse, Nat. Mater. 9, 741 (2010).

    Article  CAS  Google Scholar 

  16. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 287, 622 (2000).

    Article  CAS  Google Scholar 

  17. J.K. Holt, H.G. Park, Y.M. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Science 312, 1034 (2006).

    Article  CAS  Google Scholar 

  18. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377 (1997).

    Article  CAS  Google Scholar 

  19. C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Science 286, 1127 (1999).

    Article  CAS  Google Scholar 

  20. J.S. Arellano, L.M. Molina, A. Rubio, M.J. Lopez, J.A. Alonso, J. Chem. Phys. 117, 2281 (2002).

    Article  CAS  Google Scholar 

  21. O. Gulseren, T. Yildirim, S. Ciraci, Phys. Rev. B 66, 121401 (2002).

    Article  CAS  Google Scholar 

  22. Y. Okamoto, Y. Miyamoto, J. Phys. Chem. B 105, 3470 (2001).

    Article  CAS  Google Scholar 

  23. F.H. Yang, R.T. Yang, Carbon 40, 437 (2002).

    Article  CAS  Google Scholar 

  24. J. Chen, F. Wu, Appl. Phys. A 78, 989 (2004).

    Article  CAS  Google Scholar 

  25. S.H. Jhi, Y.K. Kwon, Phys. Rev. B 69, 245407 (2004).

    Article  CAS  Google Scholar 

  26. T. Yildirim, S. Ciraci, Phys. Rev. Lett. 94, 175501 (2005).

    Article  CAS  Google Scholar 

  27. Y.F. Zhao, Y.H. Kim, A.C. Dillon, M.J. Heben, S.B. Zhang, Phys. Rev. Lett. 94, 155504 (2005).

    Article  CAS  Google Scholar 

  28. H. Lee, W.I. Choi, J. Ihm, Phys. Rev. Lett. 97, 056104 (2006).

    Article  CAS  Google Scholar 

  29. M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G.S. Duesberg, Y.M. Choi, P. Downes, M. Hulman, S. Roth, I. Stepanek, P. Bernier, Appl. Phys. A 72, 129 (2001).

    Article  CAS  Google Scholar 

  30. P. Costa, K.S. Coleman, M.L.H. Green, Nanotechnology 16, 512 (2005).

    Article  CAS  Google Scholar 

  31. A. Lueking, R.T. Yang, AlChE J. 49, 1556 (2003).

    Article  CAS  Google Scholar 

  32. D. Stojkovic, P. Zhang, P.E. Lammert, V.H. Crespi, Phys. Rev. B 68, 195406 (2003).

    Article  CAS  Google Scholar 

  33. Y. Lin, F. Ding, B.I. Yakobson, Phys. Rev. B 78, 041402 (2008).

    Article  CAS  Google Scholar 

  34. J.O. Sofo, A.S. Chaudhari, G.D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  CAS  Google Scholar 

  35. Y.W. Li, R.T. Yang, J. Am. Chem. Soc. 128, 726 (2006).

    Article  CAS  Google Scholar 

  36. H. Lee, W.I. Choi, M.C. Nguyen, M.H. Cha, E. Moon, J. Ihm, Phys. Rev. B 76, 195110 (2007).

    Article  CAS  Google Scholar 

  37. J. Niu, B.K. Rao, P. Jena, Phys. Rev. Lett. 68, 2277 (1992).

    Article  CAS  Google Scholar 

  38. R.C. Lochan, M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 1357 (2006).

    Article  CAS  Google Scholar 

  39. M.C. Nguyen, H. Lee, J. Ihm, Solid State Commun. 147, 419 (2008).

    Article  CAS  Google Scholar 

  40. N. Park, S. Hong, G. Kim, S.H. Jhi, J. Am. Chem. Soc. 129, 8999 (2007).

    Article  CAS  Google Scholar 

  41. Y.Y. Sun, Y.H. Kim, S.B. Zhang, J. Am. Chem. Soc. 129, 12606 (2007).

    Article  CAS  Google Scholar 

  42. A. Hamaed, M. Trudeau, D.M. Antonelli, J. Am. Chem. Soc. 130, 6992 (2008).

    Article  CAS  Google Scholar 

  43. A.B. Phillips, B.S. Shivaram, Phys. Rev. Lett. 100, 105505 (2008).

    Article  CAS  Google Scholar 

  44. Q. Sun, P. Jena, Q. Wang, M. Marquez, J. Am. Chem. Soc. 128, 9741 (2006).

    Article  CAS  Google Scholar 

  45. T.S. Kim, K.J. Kim, S.K. Jo, J. Lee, J. Phys. Chem. B 112, 16431 (2008).

    Article  CAS  Google Scholar 

  46. G. Kim, S.H. Jhi, N. Park, S.G. Louie, M.L. Cohen, Phys. Rev. B 78, 085408 (2008).

    Article  CAS  Google Scholar 

  47. Y.F. Zhao, M.T. Lusk, A.C. Dillon, M.J. Heben, S.B. Zhang, Nano Lett. 8, 157 (2008).

    Article  CAS  Google Scholar 

  48. M.-H. Cha, M.C. Nguyen, Y.L. Lee, J. Ihm, J. Phys. Chem. C 114, 14276 (2010).

    Article  CAS  Google Scholar 

  49. K.R.S. Chandrakumar, S.K. Ghosh, Nano Lett. 8, 13 (2008).

    Article  CAS  Google Scholar 

  50. M. Yoon, S.Y. Yang, C. Hicke, E. Wang, D. Geohegan, Z.Y. Zhang, Phys. Rev. Lett. 100, 206806 (2008).

    Article  CAS  Google Scholar 

  51. G. Kim, S.H. Jhi, S. Lim, N. Park, Phys. Rev. B 79, 155437 (2009).

    Article  CAS  Google Scholar 

  52. W. Liu, Y.H. Zhao, Y. Li, Q. Jiang, E.J. Lavernia, J. Phys. Chem. C 113, 2028 (2009).

    Article  CAS  Google Scholar 

  53. H. Lee, J. Ihm, M.L. Cohen, S.G. Louie, Nano Lett. 10, 793 (2010).

    Article  CAS  Google Scholar 

  54. K.L. Mulfort, O.K. Farha, C.L. Stern, A.A. Sarjeant, J.T. Hupp, J. Am. Chem. Soc. 131, 3866 (2009).

    Article  CAS  Google Scholar 

  55. A. Blomqvist, C.M. Araujo, P. Srepusharawoot, R. Ahuja, Proc. Nat. Acad. Sci. U.S.A. 104, 20173 (2007).

    Article  CAS  Google Scholar 

  56. M. Dinca, J.R. Long, Angew. Chem. Int. Ed. 47, 6766 (2008).

    Article  CAS  Google Scholar 

  57. Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, J. Chem. Theory Comput. 5, 374 (2009).

    Article  CAS  Google Scholar 

  58. A. Bhattacharya, S. Bhattacharya, C. Majumder, G.P. Das, J. Phys. Chem. C 114, 10297 (2010).

    Article  CAS  Google Scholar 

  59. S.B. Chu, X.R. Hu, C.L. Du, X.B. Wu, Y.C. Dai, L.B. Hu, J.B. Deng, Y.P. Feng, Int. J. Hydrogen Energy 35, 1280 (2010).

    Article  CAS  Google Scholar 

  60. W.Q. Deng, X. Xu, W.A. Goddard, Phys. Rev. Lett. 92, 166103 (2004).

    Article  CAS  Google Scholar 

  61. G.K. Dimitrakakis, E. Tylianakis, G.E. Froudakis, Nano Lett. 8, 3166 (2008).

    Article  CAS  Google Scholar 

  62. G. Ferey, Chem. Soc. Rev. 37, 191 (2008).

    Article  CAS  Google Scholar 

  63. V. Gupta, P. Scharff, K. Risch, H. Romanus, R. Muller, Solid State Commun. 131, 153 (2004).

    Article  CAS  Google Scholar 

  64. S. Saito, A. Oshiyama, Phys. Rev. B 49, 17413 (1994).

    Article  CAS  Google Scholar 

  65. A.W.C. van den Berg, C.O. Arean, Chem. Commun. 668 (2008).

  66. K.L. Lim, H. Kazemian, Z. Yaakob, W.R.W. Daud, Chem. Eng. Technol. 33, 213 (2010).

    Article  CAS  Google Scholar 

  67. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Science 300, 1127 (2003).

    Article  CAS  Google Scholar 

  68. Y.E. Cheon, M.P. Suh, Angew. Chem. Int. Ed. 48, 2899 (2009).

    Article  CAS  Google Scholar 

  69. S.S. Han, J.L. Mendoza-Cortes, W.A. Goddard, Chem. Soc. Rev. 38, 1460 (2009).

    Article  CAS  Google Scholar 

  70. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hoon Jhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jhi, SH., Ihm, J. Developing high-capacity hydrogen storage materials via quantum simulations. MRS Bulletin 36, 198–204 (2011). https://doi.org/10.1557/mrs.2011.32

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.32

Navigation