Skip to main content
Log in

Chemisorption solid materials for hydrogen storage near ambient temperature: a review

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from −20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muradov N Z, Veziroğlu T N. “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. International Journal of Hydrogen Energy, 2008, 33(23): 6804–6839

    Article  Google Scholar 

  2. Egeland-Eriksen T, Hajizadeh A, Sartori S. Hydrogen-based systems for integration of renewable energy in power systems: achievements and perspectives. International Journal of Hydrogen Energy, 2021, 46(63): 31963–31983

    Article  Google Scholar 

  3. Sandri O, Holdsworth S, Hayes J, et al. Hydrogen for all? Household energy vulnerability and the transition to hydrogen in Australia Energy Research & Social Science, 2021, 79: 102179

    Article  Google Scholar 

  4. Hassan I A, Ramadan H S, Saleh M A, et al. Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives. Renewable & Sustainable Energy Reviews, 2021, 149: 111311

    Article  Google Scholar 

  5. Ma Y, Wang X R, Li T, et al. Hydrogen and ethanol: production, storage, and transportation. International Journal of Hydrogen Energy, 2021, 46(54): 27330–27348

    Article  Google Scholar 

  6. Hu Z, Chen M, Pan B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement. International Journal of Hydrogen Energy, 2021, 46(46): 23779–23794

    Article  Google Scholar 

  7. Roh H S, Hua T Q, Ahluwalia R K. Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles. International Journal of Hydrogen Energy, 2013, 38(29): 12795–12802

    Article  Google Scholar 

  8. Sadaghiani M S, Mehrpooya M. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. International Journal of Hydrogen Energy, 2017, 42(9): 6033–6050

    Article  Google Scholar 

  9. Elberry A M, Thakur J, Santasalo-Aarnio A, et al. Large-scale compressed hydrogen storage as part of renewable electricity storage systems. International Journal of Hydrogen Energy, 2021, 46(29): 15671–15690

    Article  Google Scholar 

  10. Andersson J, Grönkvist S. Large-scale storage of hydrogen. International Journal of Hydrogen Energy, 2019, 44(23): 11901–11919

    Article  Google Scholar 

  11. Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. International Journal of Hydrogen Energy, 2010, 35(10): 4524–4533

    Article  Google Scholar 

  12. Ali N A, Sazelee N A, Ismail M. An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. International Journal of Hydrogen Energy, 2021, 46(62): 31674–31698

    Article  Google Scholar 

  13. Doğan M, Sabaz P, Bïcïl Z, et al. Activated carbon synthesis from tangerine peel and its use in hydrogen storage. Journal of the Energy Institute, 2020, 93(6): 2176–2185

    Article  Google Scholar 

  14. Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386(6623): 377–379

    Article  Google Scholar 

  15. Rajaura R S, Srivastava S, Sharma V, et al. Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. International Journal of Hydrogen Energy, 2016, 41(22): 9454–9461

    Article  Google Scholar 

  16. Shet S P, Shanmuga Priya S, Sudhakar K, et al. A review on current trends in potential use of metal-organic framework for hydrogen storage. International Journal of Hydrogen Energy, 2021, 46(21): 11782–11803

    Article  Google Scholar 

  17. Song Y, Dai J H. Mechanisms of dopants influence on hydrogen uptake in COF-108: a first principles study. International Journal of Hydrogen Energy, 2013, 38(34): 14668–14674

    Article  Google Scholar 

  18. Chauhan P K, Parameshwaran R, Kannan P, et al. Hydrogen storage in porous polymer derived Silicon Oxycarbide ceramics: outcomes and perspectives. Ceramics International, 2021, 47(2): 2591–2599

    Article  Google Scholar 

  19. Ioannatos G E, Verykios X E. H2 storage on single- and multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2010, 35(2): 622–628

    Article  Google Scholar 

  20. Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2007, 32(9): 1121–1140

    Article  Google Scholar 

  21. Rusman N A A, Dahari M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 2016, 41(28): 12108–12126

    Article  Google Scholar 

  22. Hanada N, Ichikawa T, Fujii H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. Journal of Physical Chemistry B, 2005, 109(15): 7188–7194

    Article  Google Scholar 

  23. Sandrock G D. A new family of hydrogen storage alloys based on the system nickel-mischmetal-calcium. In: Proceedings of the 12th Intersociety Energy Conversion Engineering Conference 1977, 770828

  24. Zhu Z, Zhu S, Lu H, et al. Stability of LaNi5xCox alloys cycled in hydrogen —part 1 evolution in gaseous hydrogen storage performance. International Journal of Hydrogen Energy, 2019, 44(29): 15159–15172

    Article  Google Scholar 

  25. Srivastava S, Panwar K. Investigations on microstructures of ball-milled MmNi5 hydrogen storage alloy. Materials Research Bulletin, 2016, 73: 284–289

    Article  Google Scholar 

  26. Guo F, Namba K, Miyaoka H, et al. Hydrogen storage behavior of TiFe alloy activated by different methods. Materials Letters: X, 2021, 9: 100061

    Google Scholar 

  27. Zhou P, Cao Z, Xiao X, et al. Development of Ti−Zr−Mn−Cr−V based alloys for high-density hydrogen storage. Journal of Alloys and Compounds, 2021, 875: 160035

    Article  Google Scholar 

  28. Graetz J, Reilly J J. Decomposition kinetics of the AlH3 polymorphs. Journal of Physical Chemistry B, 2005, 109(47): 22181–22185

    Article  Google Scholar 

  29. Ahluwalia R K, Hua T Q, Peng J K. Automotive storage of hydrogen in alane. International Journal of Hydrogen Energy, 2009, 34(18): 7731–7740

    Article  Google Scholar 

  30. Sleiman S, Huot J. Effect of particle size, pressure and temperature on the activation process of hydrogen absorption in TiVZrHfNb high entropy alloy. Journal of Alloys and Compounds, 2021, 861: 158615

    Article  Google Scholar 

  31. de Almeida Neto G R, Gonçalves Beatrice C A, Leiva D R, et al. Polyetherimide-LaNi5 composite films for hydrogen storage applications. International Journal of Hydrogen Energy, 2021, 46(46): 23767–23778

    Article  Google Scholar 

  32. Mueller W M. The rare-earth hydrides. In: Mueller W M, Blackledge J P, Libowitz G G. Metal Hydrides. New York: Academic Press, 1968, 384–440

    Chapter  Google Scholar 

  33. Young K. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier, 2018

    Google Scholar 

  34. Sandrock G D, Murray J J, Post M L, et al. Hydrides and deuterides of CaNi5. Materials Research Bulletin, 1982, 17(7): 887–894

    Article  Google Scholar 

  35. Lee Y J, Lee J Y, Park J K. A study on the hydride formation of TiFe and its alloys. Journal of the Korean Institute of Metals, 1982, 20(11): 969–974

    Google Scholar 

  36. The Hydrogen and Fuel Cell Technologies Office. DOE target for hydrogen storage. Washington, DC, USA, 2022

  37. Keçebaş A, Kayfeci M. Hydrogen properties. In: Calise F, D’ Accadia M D, Santarelli M, eds. Solar Hydrogen Production. New York: Academic Press, 2019

    Google Scholar 

  38. Idriss H, Scott M, Subramani V. Introduction to hydrogen and its properties. In: Subramani V, Basile A, Veziroğlu T N, eds. Compendium of Hydrogen Energy: Hydrogen Production and Purification. Cambridge: Woodhead Publishing, 2015

    Google Scholar 

  39. Fukai Y. The Metal-Hydrogen System: Basic Bulk Properties. Berlin: Springer, 2005

  40. Züttel A. Fuels-hydrogen storage hydrides. In: Garche J, ed. Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier, 2009, 440–458

    Chapter  Google Scholar 

  41. Stein F, Leineweber A. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science, 2021, 56(9): 5321–5427

    Article  Google Scholar 

  42. Lawrence Berkeley National Laboratory. Lattice structure. San Francisco, USA, 2022

  43. Acha E, Requies J M, Cambra J F. Hydrogen purification methods: Iron-based redox processes, adsorption, and metal hydrides. In: Subramani V, Basile A, Veziroğlu T N. Compendium of Hydrogen Energy: Hydrogen Production and Purification. Cambridge: Woodhead Publishing, 2015, 395–417

    Chapter  Google Scholar 

  44. Shashikala K. Hydrogen storage materials. In: Banerjee S, Tyagi A K. Functional Materials. Amsterdam: Elsevier, 2012, 607–637

    Chapter  Google Scholar 

  45. Nakamura Y, Sakaki K, Kim H, et al. Reaction paths via a new transient phase in non-equilibrium hydrogen absorption of LaNi2Co3. International Journal of Hydrogen Energy, 2020, 45(41): 21655–21665

    Article  Google Scholar 

  46. Yang F, Wang J, Zhang Y, et al. Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2022, 47(21): 11236–11249

    Article  Google Scholar 

  47. Stentson N T, McWhorter S, Ahn C C. Introduction to hydrogen storage. In: Gupta R B, Basile A, Veziroğlu T N, eds. Compendium of Hydrogen Energy: Hydrogen Storage, Transportation and Infrastructure. Cambridge: Woodhead Publishing, 2016, 3–25

    Chapter  Google Scholar 

  48. Saini N, Pandey C, Mahapatra M M. Effect of diffusible hydrogen content on embrittlement of P92 steel. International Journal of Hydrogen Energy, 2017, 42(27): 17328–17338

    Article  Google Scholar 

  49. Liu Y, Pan H. Hydrogen storage materials. In: Suib S L. New and Future Developments in Catalysis: Batteries, Hydrogen Storage and Fuel Cells. Amsterdam: Elsevier, 2013, 377–405

    Chapter  Google Scholar 

  50. Chandra D. Intermetallics for hydrogen storage. In: Walker G. Solid-State Hydrogen Storage. Cambridge: Woodhead Publishing, 2008, 315–356

    Chapter  Google Scholar 

  51. Maeland A J. Hydrides for hydrogen storage. In: Peruzzini M, Poli R. Recent advances in hydride chemistry. Amsterdam: Elsevier, 2001, 531–556

    Chapter  Google Scholar 

  52. Heubner F, Hilger A, Kardjilov N, et al. In-operando stress measurement and neutron imaging of metal hydride composites for solid-state hydrogen storage. Journal of Power Sources, 2018, 397: 262–270

    Article  Google Scholar 

  53. Goto K, Ozaki S, Nakao W. Effect of diffusion coefficient variation on interrelation between hydrogen diffusion and induced internal stress in hydrogen storage alloys. Journal of Alloys and Compounds, 2017, 691: 705–712

    Article  Google Scholar 

  54. Zhang Y, Wei X, Zhang W, et al. Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy. International Journal of Hydrogen Energy, 2020, 45(58): 33832–33845

    Article  Google Scholar 

  55. Yong H, Wei X, Zhang K, et al. Characterization of microstructure, hydrogen storage kinetics and thermodynamics of ball-milled Mg90Y1.5Ce1.5Ni7 alloy. International Journal of Hydrogen Energy, 2021, 46(34): 17802–17813

    Article  Google Scholar 

  56. Rattan Paul D, Sharma A, Panchal P, et al. Effect of ball milling and iron mixing on structural and morphological properties of magnesium for hydrogen storage application. Materials Today: Proceedings, 2021, 42: 1673–1677

    Google Scholar 

  57. Lv J, Wang Q, Chen P, et al. Effect of ball-milling time and Pd addition on electrochemical hydrogen storage performance of Co2B alloy. Solid State Sciences, 2020, 103: 106184

    Article  Google Scholar 

  58. Chen Z, Luo L, Su Z, et al. Effect of LaH3 additive on microstructures and hydrogen storage properties of V40Ti26Cr26Fe8 alloys prepared by hydride powder sintering method. International Journal of Hydrogen Energy, 2019, 44(26): 13538–13548

    Article  Google Scholar 

  59. Zaluska A, Zaluski L, Ström-Olsen J O. Lithium-beryllium hydrides: the lightest reversible metal hydrides. Journal of Alloys and Compounds, 2000, 307(1–2): 157–166

    Article  Google Scholar 

  60. Fromm K M. Chemistry of alkaline earth metals: it is not all ionic and definitely not boring! Coordination Chemistry Reviews, 2020, 408: 213193

    Article  Google Scholar 

  61. Zhang Y, Shimoda K, Miyaoka H, et al. Thermal decomposition of alkaline-earth metal hydride and ammonia borane composites. International Journal of Hydrogen Energy, 2010, 35(22): 12405–12409

    Article  Google Scholar 

  62. George L, Saxena S K. Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: a review. International Journal of Hydrogen Energy, 2010, 35(11): 5454–5470

    Article  Google Scholar 

  63. Zhang X, Liu Y, Ren Z, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy & Environmental Science, 2021, 14(4): 2302–2313

    Article  Google Scholar 

  64. Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. Journal of Alloys and Compounds, 2001, 315(1–2): 237–242

    Article  Google Scholar 

  65. Liang G, Huot J, Boily S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. Journal of Alloys and Compounds, 1999, 292(1–2): 247–252

    Article  Google Scholar 

  66. Huot J, Ravnsbæk D B, Zhang J, et al. Mechanochemical synthesis of hydrogen storage materials. Progress in Materials Science, 2013, 58(1): 30–75

    Article  Google Scholar 

  67. Zhang X, Shen Z, Jian N, et al. A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2018, 43(52): 23327–23335

    Article  Google Scholar 

  68. Zhang X, Leng Z, Gao M, et al. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. Journal of Power Sources, 2018, 398: 183–192

    Article  Google Scholar 

  69. Zhou C, Fang Z Z, Ren C, et al. Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. Journal of Physical Chemistry C, 2013, 117(25): 12973–12980

    Article  Google Scholar 

  70. Boukhvalov D W, Katsnelson M I, Lichtenstein A I. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(3): 035427

    Article  Google Scholar 

  71. Levesque D, Gicquel A, Darkrim F L, et al. Monte Carlo simulations of hydrogen storage in carbon nanotubes. Journal of Physics Condensed Matter, 2002, 14(40): 9285–9293

    Article  Google Scholar 

  72. Xie X, Hou C, Chen C, et al. First-principles studies in Mg-based hydrogen storage materials: a review. Energy, 2020, 211: 118959

    Article  Google Scholar 

  73. Bahou S, Labrim H, Lakhal M, et al. Magnesium vacancies and hydrogen doping in MgH2 for improving gravimetric capacity and desorption temperature. International Journal of Hydrogen Energy, 2021, 46(2): 2322–2329

    Article  Google Scholar 

  74. Lakhal M, Bhihi M, Benyoussef A, et al. The hydrogen ab/desorption kinetic properties of doped magnesium hydride MgH2 systems by first principles calculations and kinetic Monte Carlo simulations. International Journal of Hydrogen Energy, 2015, 40(18): 6137–6144

    Article  Google Scholar 

  75. Edalati K, Uehiro R, Ikeda Y, et al. Design and synthesis of a magnesium alloy for room temperature hydrogen storage. Acta Materialia, 2018, 149: 88–96

    Article  Google Scholar 

  76. Zhang J, Zhu Y, Yao L, et al. State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. Journal of Alloys and Compounds, 2019, 782: 796–823

    Article  Google Scholar 

  77. Kong V C Y, Kirk D W, Foulkes F R, et al. Development of hydrogen storage for fuel cell generators II: utilization of calcium hydride and lithium hydride. International Journal of Hydrogen Energy, 2003, 28(2): 205–214

    Article  Google Scholar 

  78. Xiao Y, Wu C, Wu H, et al. Hydrogen generation by CaH2-induced hydrolysis of Mg17Al12 hydride. International Journal of Hydrogen Energy, 2011, 36(24): 15698–15703

    Article  Google Scholar 

  79. Kojima Y, Suzuki K I, Fukumoto K, et al. Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. International Journal of Hydrogen Energy, 2002, 27(10): 1029–1034

    Article  Google Scholar 

  80. Liang G, Huot J, Schulz R. Mechanical alloying and hydrogen storage properties of CaNi5-based alloys. Journal of Alloys and Compounds, 2001, 321(1): 146–150

    Article  Google Scholar 

  81. Chumphongphan S, Paskevicius M, Sheppard D A, et al. Cycle life and hydrogen storage properties of mechanical alloyed Ca1−xZrxNi5−y,Cry; (x = 0, 0.05 and y = 0, 0.1). International Journal of Hydrogen Energy, 2012, 37(9): 7586–7593

    Article  Google Scholar 

  82. Liang G, Schulz R. Phase structures and hydrogen storage properties of Ca−Mg−Ni alloys prepared by mechanical alloying. Journal of Alloys and Compound, 2003, 356–357: 612–616

    Article  Google Scholar 

  83. Si T Z, Zhang Q A, Pang G, et al. Structural characteristics and hydrogen storage properties of Ca3.0xMgxNi9 (x = 0.5, 1.0, 1.5 and 2.0) alloys. International Journal of Hydrogen Energy, 2009, 34(3): 1483–1488

    Article  Google Scholar 

  84. Shan X, Payer J H, Wainright J S. Increased performance of hydrogen storage by Pd-treated LaNi4.7Al0.3, CaNi5 and Mg2Ni. Journal of Alloys and Compounds, 2006, 426(1–2): 400–407

    Article  Google Scholar 

  85. Shan X, Payer J H, Wainright J S. Improved durability of hydrogen storage alloys. Journal of Alloys and Compounds, 2007, 430(1–2): 262–268

    Article  Google Scholar 

  86. Takeshita H T, Sakamoto Y, Takeichi N, et al. Synthesis of CaNi1xPdx (0.1 ⩽ x ⩽ 1) alloys and hydrogenation properties of CaPd. Journal of Alloys and Compounds, 2002, 347(1–2): 231–238

    Article  Google Scholar 

  87. Ma L, Sun Y, Wang L, et al. Calcium decoration of boron nitride nanotubes with vacancy defects as potential hydrogen storage materials: a first-principles investigation. Materials Today. Communications, 2021, 26: 101985

    Article  Google Scholar 

  88. Mao J, Guo P, Zhang T, et al. A first-principle study on hydrogen storage of metal atoms (M = Li, Ca, Sc, and Ti) coated B40 fullerene composites. Computational & Theoretical Chemistry, 2020, 1181: 112823

    Article  Google Scholar 

  89. Yoon M, Yang S, Hicke C, et al. Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Physical Review Letters, 2008, 100(20): 206806

    Article  Google Scholar 

  90. Ataca C, Aktürk E, Ciraci S. Hydrogen storage of calcium atoms adsorbed on graphene: first-principles plane wave calculations. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(4): 041406

    Article  Google Scholar 

  91. Lee H, Ihm J, Cohen M L, et al. Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Letters, 2010, 10(3): 793–798

    Article  Google Scholar 

  92. Gao Y, Zhao N, Li J, et al. Hydrogen spillover storage on Cadecorated graphene. International Journal of Hydrogen Energy, 2012, 37(16): 11835–11841

    Article  Google Scholar 

  93. Gambini M, Stilo T, Vellini M. Selection of metal hydrides for a thermal energy storage device to support low-temperature concentrating solar power plants. International Journal of Hydrogen Energy, 2020, 45(53): 28404–28425

    Article  Google Scholar 

  94. Mukherjee D, Höllerhage T, Leich V, et al. The nature of the heavy alkaline earth metal-hydrogen bond: synthesis, structure, and reactivity of a cationic strontium hydride cluster. Journal of the American Chemical Society, 2018, 140(9): 3403–3411

    Article  Google Scholar 

  95. Hosseinabadi N. The beryllium/strontium doped hydrogen storage alanate nano powders for concentrating solar thermal power applications. International Journal of Hydrogen Energy, 2021, 46(7): 5025–5044

    Article  Google Scholar 

  96. Bruzzone G, Costa G, Ferretti M, et al. Hydrogen storage in a beryllium substituted TiFe compound. International Journal of Hydrogen Energy, 1980, 5(3): 317–322

    Article  Google Scholar 

  97. Li D, Ouyang Y, Li J, et al. Hydrogen storage of beryllium adsorbed on graphene doping with boron: first-principles calculations. Solid State Communications, 2012, 152(5): 422–425

    Article  Google Scholar 

  98. Rahimi R, Solimannejad M. First-principles study of superior hydrogen storage performance of Li-decorated Be2N6 monolayer. International Journal of Hydrogen Energy, 2020, 45(38): 19465–19478

    Article  Google Scholar 

  99. Wang Y J, Xu L, Qiao L H, et al. Ultra-high capacity hydrogen storage of B6Be2 and B8Be2 clusters. International Journal of Hydrogen Energy, 2020, 45(23): 12932–12939

    Article  Google Scholar 

  100. Castillo-Alvarado F L, Ortiz-Lopez J, Arellano J S, et al. Hydrogen storage on beryllium-coated toroidal carbon nanostructure C120 modeled with density functional theory. Advances in Science and Technology (Owerri, Nigeria), 2010, 72: 188–195

    Article  Google Scholar 

  101. Ghosh S, Padmanabhan V. Beryllium-doped single-walled carbon nanotubes with Stone-Wales defects: a promising material to store hydrogen at room temperature. International Journal of Hydrogen Energy, 2017, 42(38): 24237–24246

    Article  Google Scholar 

  102. Beheshtian J, Ravaei I. Hydrogen storage by BeO nano-cage: a DFT study. Applied Surface Science, 2016, 368: 76–81

    Article  Google Scholar 

  103. Liu J, Li K, Cheng H, et al. New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5xAlx alloys. International Journal of Hydrogen Energy, 2017, 42(39): 24904–24914

    Article  Google Scholar 

  104. Molinas B, Pontarollo A, Scapin M, et al. The optimization of MmNi5xAlx hydrogen storage alloy for sea or lagoon navigation and transportation. International Journal of Hydrogen Energy, 2016, 41(32): 14484–14490

    Article  Google Scholar 

  105. Mohammadshahi S S, Gould T, Gray E M, et al. An improved model for metal-hydrogen storage tanks-Part 1: model development. International Journal of Hydrogen Energy, 2016, 41(5): 3537–3550

    Article  Google Scholar 

  106. Hardy B J, Anton D L. Hierarchical methodology for modeling hydrogen storage systems. Part II: detailed models. International Journal of Hydrogen Energy, 2009, 34(7): 2992–3004

    Article  Google Scholar 

  107. Hardy B J, Anton D L. Hierarchical methodology for modeling hydrogen storage systems. Part II: detailed models. International Journal of Hydrogen Energy, 2009, 34(7): 2992–3004

    Article  Google Scholar 

  108. Chandra S, Sharma P, Muthukumar P, et al. Modeling and numerical simulation of a 5 kg LaNi5-based hydrogen storage reactor with internal conical fins. International Journal of Hydrogen Energy, 2020, 45(15): 8794–8809

    Article  Google Scholar 

  109. Oi T, Maki K, Sakaki Y. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger. Journal of Power Sources, 2004, 125(1): 52–61

    Article  Google Scholar 

  110. Afzal M, Mane R, Sharma P. Heat transfer techniques in metal hydride hydrogen storage: a review. International Journal of Hydrogen Energy, 2017, 42(52): 30661–30682

    Article  Google Scholar 

  111. Rodríguez Sánchez A, Klein H P, Groll M. Expanded graphite as heat transfer matrix in metal hydride beds. International Journal of Hydrogen Energy, 2003, 28(5): 515–527

    Article  Google Scholar 

  112. Ferekh S, Gwak G, Kyoung S, et al. Numerical comparison of heat-fin- and metal-foam-based hydrogen storage beds during hydrogen charging process. International Journal of Hydrogen Energy, 2015, 40(42): 14540–14550

    Article  Google Scholar 

  113. Eisapour A H, Naghizadeh A, Eisapour M, et al. Optimal design of a metal hydride hydrogen storage bed using a helical coil heat exchanger along with a central return tube during the absorption process. International Journal of Hydrogen Energy, 2021, 46(27): 14478–14493

    Article  Google Scholar 

  114. Urunkar R U, Patil S D. Enhancement of heat and mass transfer characteristics of metal hydride reactor for hydrogen storage using various nanofluids. International Journal of Hydrogen Energy, 2021, 46(37): 19486–19497

    Article  Google Scholar 

  115. Afzal M, Sharma P. Design and computational analysis of a metal hydride hydrogen storage system with hexagonal honeycomb based heat transfer enhancements—part A. International Journal of Hydrogen Energy, 2021, 46(24): 13116–13130

    Article  Google Scholar 

  116. Melnichuk M, Silin N, Peretti H A. Optimized heat transfer fin design for a metal-hydride hydrogen storage container. International Journal of Hydrogen Energy, 2009, 34(8): 3417–3424

    Article  Google Scholar 

  117. Laurencelle F, Goyette J. Simulation of heat transfer in a metal hydride reactor with aluminium foam. International Journal of Hydrogen Energy, 2007, 32(14): 2957–2964

    Article  Google Scholar 

  118. Pohlmann C, Röntzsch L, Weißgärber T, et al. Heat and gas transport properties in pelletized hydride-graphite-composites for hydrogen storage applications. International Journal of Hydrogen Energy, 2013, 38(3): 1685–1691

    Article  Google Scholar 

  119. Nguyen H Q, Shabani B. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. International Journal of Hydrogen Energy, 2021, 46(62): 31699–31726

    Article  Google Scholar 

  120. Li F, Zhao J, Tian D, et al. Hydrogen storage behavior in C15 Laves phase compound TiCr2 by first principles. Journal of Applied Physics, 2009, 105(4): 043707

    Article  Google Scholar 

  121. Qu H, Du J, Pu C, et al. Effects of Co introduction on hydrogen storage properties of Ti−Fe-−Mn alloys. International Journal of Hydrogen Energy, 2015, 40(6): 2729–2735

    Article  Google Scholar 

  122. Zhang Y, Wei X, Gao J, et al. Electrochemical hydrogen storage behaviors of as-milled Mg−Ti−Ni−Co−Al-based alloys applied to Ni−MH battery. Electrochimica Acta, 2020, 342: 136123

    Article  Google Scholar 

  123. Zheng W, Song W, Wu T, et al. Experimental investigation and thermodynamic modeling of the ternary Ti−Fe−Mn system for hydrogen storage applications. Journal of Alloys and Compounds, 2022, 891: 161957

    Article  Google Scholar 

  124. Liu S, Qiu G, Liu X, et al. Structures and properties of TiMn25x(V4Fe)x(x = 0.30, 0.35) hydrogen storage alloys. Rare Metal Materials and Engineering, 2010, 39(2): 214–218

    Article  Google Scholar 

  125. Dematteis E M, Dreistadt D M, Capurso G, et al. Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn. Journal of Alloys and Compounds, 2021, 874: 159925

    Article  Google Scholar 

  126. Yang T, Wang P, Xia C, et al. Effect of chromium, manganese and yttrium on microstructure and hydrogen storage properties of TiFe-based alloy. International Journal of Hydrogen Energy, 2020, 45(21): 12071–12081

    Article  Google Scholar 

  127. Nayebossadri S, Book D. Development of a high-pressure Ti−Mn based hydrogen storage alloy for hydrogen compression. Renewable Energy, 2019, 143: 1010–1021

    Article  Google Scholar 

  128. Sathe R Y, Bae H, Lee H, et al. Hydrogen storage capacity of low-lying isomer of C24 functionalized with Ti. International Journal of Hydrogen Energy, 2020, 45(16): 9936–9945

    Article  Google Scholar 

  129. Feng B, Zhang J, Zhong Q, et al. Experimental realization of two-dimensional boron sheets. Nature Chemistry, 2016, 8(6): 563–568

    Article  Google Scholar 

  130. Peng B, Zhang H, Shao H, et al. Stability and strength of atomically thin borophene from first principles calculations. Materials Research Letters, 2017, 5(6): 399–407

    Article  Google Scholar 

  131. Wen T Z, Xie A Z, Li J L, et al. Novel Ti-decorated borophene χ3 as potential high-performance for hydrogen storage medium. International Journal of Hydrogen Energy, 2020, 45(53): 29059–29069

    Article  Google Scholar 

  132. Lebon A, Carrete J, Gallego L J, et al. Ti-decorated zigzag graphene nanoribbons for hydrogen storage. A van der Waals-corrected density-functional study. International Journal of Hydrogen Energy, 2015, 40(14): 4960–4968

    Article  Google Scholar 

  133. Grew K N, Brownlee Z B, Shukla K C, et al. Assessment of alane as a hydrogen storage media for portable fuel cell power sources. Journal of Power Sources, 2012, 217: 417–430

    Article  Google Scholar 

  134. Wang L, Rawal A, Aguey-Zinsou K F. Hydrogen storage properties of nanoconfined aluminium hydride (AlH3). Chemical Engineering Science, 2019, 194: 64–70

    Article  Google Scholar 

  135. Liang L, Wang C, Ren M, et al. Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3. ACS Applied Materials & Interfaces, 2021, 13(23): 26998–27005

    Article  Google Scholar 

  136. Ianni E, Sofianos M V, Rowles M R, et al. Synthesis of NaAlH4/Al composites and their applications in hydrogen storage. International Journal of Hydrogen Energy, 2018, 43(36): 17309–17317

    Article  Google Scholar 

  137. Urbanczyk R, Peinecke K, Felderhoff M, et al. Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6. International Journal of Hydrogen Energy, 2014, 39(30): 17118–17128

    Article  Google Scholar 

  138. Huang Y, Shao H, Zhang Q, et al. Layer-by-layer uniformly confined Graphene-NaAlH4 composites and hydrogen storage performance. International Journal of Hydrogen Energy, 2020, 45(52): 28116–28122

    Article  Google Scholar 

  139. Montero J, Ek G, Sahlberg M, et al. Improving the hydrogen cycling properties by Mg addition in Ti−V−Zr−Nb refractory high entropy alloy. Scripta Materialia, 2021, 194: 113699

    Article  Google Scholar 

  140. Edalati P, Floriano R, Mohammadi A, et al. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scripta Materialia, 2020, 178: 387–390

    Article  Google Scholar 

  141. Tu B, Wang H, Wang Y, et al. Optimizing Ti−Zr−Cr−Mn−Ni−V alloys for hybrid hydrogen storage tank of fuel cell bicycle. International Journal of Hydrogen Energy, 2022, 47(33): 14952–14960

    Article  Google Scholar 

  142. Kunce I, Polanski M, Bystrzycki J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). International Journal of Hydrogen Energy, 2014, 39(18): 9904–9910

    Article  Google Scholar 

  143. Liu P, Xie X, Xu L, et al. Hydrogen storage properties of (Ti0.85Zr0.15)1.05Mn1.2Cr0.6V0.1M0.1 (M = Ni, Fe, Cu) alloys easily activated at room temperature. Progress in Natural Science, 2017, 27(6): 652–657

    Article  Google Scholar 

  144. Hu J, Shen H, Jiang M, et al. A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo. Nanomaterials (Basel, Switzerland), 2019, 9(3): 461

    Article  Google Scholar 

  145. Shen H, Zhang J, Hu J, et al. A novel TiZrHfMoNb high-entropy alloy for solar thermal energy storage. Nanomaterials (Basel, Switzerland), 2019, 9(2): 248

    Article  Google Scholar 

  146. Higuchi K, Yamamoto K, Kajioka H, et al. Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. Journal of Alloys and Compounds, 2002, 330–332: 526–530

    Article  Google Scholar 

  147. Reddy G L N, Kumar S. Reversible hydrogen storage in vapour deposited Mg-5 at.% Pd powder composites. International Journal of Hydrogen Energy, 2014, 39(9): 4421–4426

    Article  Google Scholar 

  148. Han B, Yu S, Wang H, et al. Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy. Scripta Materialia, 2022, 216: 114736

    Article  Google Scholar 

  149. Liu S, Liu J, Liu X, et al. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nature Nanotechnology, 2021, 16(3): 331–336

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China for the Distinguished Young Scholars (Grant No. 51825602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, S., Wang, L. et al. Chemisorption solid materials for hydrogen storage near ambient temperature: a review. Front. Energy 17, 72–101 (2023). https://doi.org/10.1007/s11708-022-0835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-022-0835-7

Keywords

Navigation