Skip to main content
Log in

Plasmonics and nanophotonics for photovoltaics

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In recent years, there has been rapid development in the field of nanoscale light trapping for solar cells. This has been driven by the decrease in thickness of solar cells in order to reduce materials costs, as well as advances in fabrication technology and computer power for simulating nanoscale structures. Nanoscale light trapping offers the possibility of enhancing absorption beyond the limits achievable with geometrical optics for certain structures. It also allows the optical design to be separated from the electrical design, as for example in plasmonic solar cells. Most importantly, thin-film cell designs will need to incorporate nanophotonic light trapping in order to reach their ultimate efficiency limits. In this article, we review the major types of nanophotonic light trapping, including plasmonic, diffraction gratings, and random scattering surfaces and describe the major advantages and disadvantages of each. In addition, we describe the most important related fabrication and characterization technologies and provide an outlook on future directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. P. Campbell, M.A. Green, J. Appl. Phys. 62, 243 (1987).

    Google Scholar 

  2. K.J. Weber, A.W. Blakers, Prog. Photovoltaics Res. Appl. 13, 691 (2005).

    Google Scholar 

  3. E. Yablonovitch, G.D. Cody, IEEE Trans. Electron Devices 29, 300 (1982).

    Google Scholar 

  4. R.W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983).

    Google Scholar 

  5. H.R. Stuart, D.G. Hall, J. Opt. Soc. Am. A 14, 3001 (1997).

    Google Scholar 

  6. R. Brendel, Thin-Film Crystalline Silicon Solar Cells (Wiley-VCH, NY, 2003).

    Google Scholar 

  7. Z. Yu, A. Raman, S. Fan, Proc. Natl. Acad. Sci. U.S.A. 107, 17491 (2010).

    Google Scholar 

  8. M.A. Green, Prog. Photovoltaics Res. Appl. 7, 327 (1999).

    Google Scholar 

  9. L. Tsakalakos, Ed., Nanotechnology for Photovoltaics (CRS Press, Taylor and Francis, MA, 2010).

    Google Scholar 

  10. S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, J. Appl. Phys. 101, 093105 (2007).

    Google Scholar 

  11. S. Pillai, K.R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M.A. Green, Appl. Phys. Lett. 88, 161102 (2006).

    Google Scholar 

  12. P. Würfel, J. Phys. C: Solid State Phys. 15, 3967 (1982).

    Google Scholar 

  13. D.M. Schaadt, B. Feng, E.T. Yu, Appl. Phys. Lett. 86, 063106 (2005).

    Google Scholar 

  14. H.R. Stuart, D.G. Hall, Appl. Phys. Lett. 69, 2327 (1996).

    Google Scholar 

  15. D. Derkacs, S.H. Lim, P. Matheu, W. Mar, E.T. Yu, Appl. Phys. Lett. 89, 093103 (2006).

    Google Scholar 

  16. S.H. Lim, W. Mar, P. Matheu, D. Derkacs, E.T. Yu, J. Appl. Phys. 101, 104309 (2007).

    Google Scholar 

  17. F. Beck, K.R. Catchpole, A. Polman, J. Appl. Phys. 105, 114310 (2009).

    Google Scholar 

  18. F.J. Beck, S. Mokkapati, A. Polman, K.R. Catchpole, Appl. Phys. Lett. 96, 033113 (2010).

    Google Scholar 

  19. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K.R. Catchpole, P. Campbell, M.A. Green, Appl. Phys. Lett. 96, 261109 (2010).

    Google Scholar 

  20. S.H. Lim, D. Derkacs, E.T. Yu, J. Appl. Phys. 105, 073101 (2009).

    Google Scholar 

  21. C.O. McPheeters, C.J. Hill, S.H. Lim, D. Derkacs, D.Z. Ting, E.T. Yu, J. Appl. Phys. 106, 056101 (2009).

    Google Scholar 

  22. G. Qilin, J. Phys. D: Appl. Phys. 43, 465101 (2010).

    Google Scholar 

  23. V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Nano Lett. 8, 4391 (2008).

    Google Scholar 

  24. R.H. Franken, R.L. Stolk, H. Li, C.H.M. v.d. Werf, J.K. Rath, R.E.I. Schropp, J. Appl. Phys. 102, 014503 (2007).

    Google Scholar 

  25. Y.A. Akimov, W.S. Koh, S.Y. Sian, S. Ren, Appl. Phys. Lett. 96, 073111 (2010).

    Google Scholar 

  26. M. Kirkengen, J. Bergli, Y.M. Galperin, J. Appl. Phys. 102, 093713 (2007).

    Google Scholar 

  27. R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Adv. Mater. 21, 3504 (2009).

    Google Scholar 

  28. C. Hägglund, B. Kasemo, Opt. Express 17, 11944 (2009).

    Google Scholar 

  29. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010).

    Google Scholar 

  30. K.R. Catchpole, A. Polman, Opt. Express 16, 21793 (2008).

    Google Scholar 

  31. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton University Press, NJ, 1995).

    Google Scholar 

  32. Y. Xia, B. Gates, Z.Y. Li, Adv. Mater. 13, 409 (2001).

    Google Scholar 

  33. A. Mihi, H. Miguez, J. Phys. Chem. B 109, 15968 (2005).

    Google Scholar 

  34. K.R. Catchpole, M.A. Green, J. Appl. Phys. 101, 063105 (2007).

    Google Scholar 

  35. C. Heine, R.H. Morf, Appl. Opt. 34, 2476 (1995).

    Google Scholar 

  36. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L.C. Kimerling, B.A. Alamariu, Appl. Phys. Lett. 89, 111111 (2006).

    Google Scholar 

  37. J.G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, D.W. Prather, Optics Express 16, 15238 (2008).

    Google Scholar 

  38. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, M.-L. Wu, Opt. Express 16, 7969 (2008).

    Google Scholar 

  39. D. Zhou, R. Biswas, J. Appl. Phys. 103, 093102 (2008).

    Google Scholar 

  40. S. Boden, D. Bagnall, Prog. Photovoltaics Res. Appl. 18, 195 (2010).

    Google Scholar 

  41. J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Nano Lett. 9, 279 (2008).

    Google Scholar 

  42. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Nature Materials 9, 239 (2010).

    Google Scholar 

  43. E. Garnett, P. Yang, Nano Lett. 10, 1082 (2010).

    Google Scholar 

  44. O.L. Muskens, J.G. Rivas, R.E. Algra, E.P.A.M. Bakkers, A. Lagendijk, Nano Lett. 8, 2638 (2008).

    Google Scholar 

  45. B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. 97, 114302 (2005).

    Google Scholar 

  46. M.C. Putnam, D.B. Turner-Evans, M.D. Kelzenberg, S.W. Boettcher, N.S. Lewis, H.A. Atwater, Appl. Phys. Lett. 95, 163116 (2009).

    Google Scholar 

  47. K.E. Plass, M.A. Filler, J.M. Spurgeon, B.M. Kayes, S. Maldonado, B.S. Brunschwig, H.A. Atwater, N.S. Lewis, Adv. Mat. 21, 325 (2009).

    Google Scholar 

  48. R. Kapadia, Z. Fan, A. Javey, Appl. Phys. Lett. 96, 103116 (2010).

    Google Scholar 

  49. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007).

    Google Scholar 

  50. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Nano Lett. 9, 1549 (2009).

    Google Scholar 

  51. Y. Dong, B. Tian, T.J. Kempa, C.M. Lieber, Nano Lett. 9, 2183 (2009).

    Google Scholar 

  52. Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Nano Lett. 8, 4191 (2008).

    Google Scholar 

  53. M.J. Stocks, A. Cuevas, A.W. Blakers, Prog. Photovoltaics 4, 35 (1996).

    Google Scholar 

  54. K.R. Catchpole, S. Mokkapati, F. Beck, J. Appl. Phys. 109, 084519 (2011).

    Google Scholar 

  55. C. Battaglia, K. Soderstrom, J. Escarre, F.-J. Haug, D. Domine, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, C. Ballif, Appl. Phys. Lett. 96, 213504 (2010).

    Google Scholar 

  56. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, F. Lederer, Optics Express 18, A335 (2010).

  57. S. Fahr, C. Rockstuhl, F. Lederer, Appl. Phys. Lett. 92, 171114 (2008).

    Google Scholar 

  58. C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, R. Carius, Appl. Phys. Lett. 93, 061105 (2008).

    Google Scholar 

  59. N. Bonod, E. Popov, Opt. Lett. 33, 2398 (2008).

    Google Scholar 

  60. O.D. Velev, S. Gupta, Adv. Mater. 21, 1897 (2009).

    Google Scholar 

  61. C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).

    Google Scholar 

  62. D. Inns, P. Campbell, K.R. Catchpole, Advances in Optoelectronics 32707 (2007).

  63. R. Gupta, M.J. Dyer, W.A. Weimer, J. Appl. Phys. 92, 5264 (2002).

    Google Scholar 

  64. M. Verschuuren, H.V. Sprang, in Proc. MRS Spring Meeting 1002, 1002– N03-05 (Materials Research Society, Warrendale, PA, 2007).

  65. L.J. Guo, Adv. Mater. 19, 495 (2007).

    Google Scholar 

  66. J. Müller, B. Rech, J. Springer, M. Vanecek, Solar Energy 77, 917 (2004).

    Google Scholar 

  67. D.S. Ruby, S.H. Zaidi, S. Narayanan, B.M. Damiani, A. Rohatgi, Sol. Eng. Mat. Sol. Cells 74, 133 (2002).

    Google Scholar 

  68. V.E. Ferry, M.A. Verschuuren, H.B.T. Li, R.E.I. Schropp, H.A. Atwater, A. Polman, Appl. Phys. Lett. 95, 183503 (2009).

    Google Scholar 

  69. E. Wang, S. Mokkapati, F.J. Beck, Z. Ouyang, S. Varlamov, K.R. Catchpole, paper presented at the Proceedings 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 2010.

  70. C. Rockstuhl, F. Lederer, K. Bittkau, R. Carius, Appl. Phys. Lett. 91, 171104 (2007).

    Google Scholar 

  71. S.P. Sundararajan, N.K. Grady, N. Mirin, N.J. Halas, Nano Lett. 8, 624 (2008).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council. A.B. is grateful to the Austrian Science Fund (FWF)—project J 2979.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kylie R. Catchpole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catchpole, K.R., Mokkapati, S., Beck, F. et al. Plasmonics and nanophotonics for photovoltaics. MRS Bulletin 36, 461–467 (2011). https://doi.org/10.1557/mrs.2011.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.132

Navigation