Skip to main content
Log in

Recent advances in plasmonic organic photovoltaics

  • Reviews
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Light trapping based on the localized surface-plasmon resonance (LSPR) effect of metallic nanostructures is a promising strategy to improve the device performance of organic solar cells (OSCs). We review recent advances in plasmonic-enhanced OPVs with solution-processed metallic nanoparticles (NPs). The different types of metallic NPs (sizes, shapes, and hybrids), incorporation positions, and NPs with tunable resonance wavelengths toward broadband enhancement are systematically summarized to give a guideline for the realization of highly efficient plasmonic photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater, 2010, 9: 205–213

    Article  CAS  Google Scholar 

  2. Heeger AJ. Bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater, 2014, 26: 10–28

    Article  CAS  Google Scholar 

  3. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photonics, 2012, 6: 153–161

    Article  CAS  Google Scholar 

  4. Dou LT, You JB, Hong ZR, Xu Z, Li G, Street RA, Yang Y. A decade of organic/polymeric photovoltaic research. Adv Mater, 2014, 25: 6642–6671

    Article  Google Scholar 

  5. Yip HL, Jen AKY. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ Sci, 2012, 5: 5994–6011

    Article  CAS  Google Scholar 

  6. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics, 2012, 6: 591–595

    Google Scholar 

  7. Gan QQ, Bartoli FJ, Kafafi ZH. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Adv Mater, 2013, 25: 2385–2396

    Article  CAS  Google Scholar 

  8. Gao L, Zhang J, He C, Zhang Y, Sun QJ, Li YF. Effect of additives on the photovoltaic properties of organic solar cells based on triphenylamine-containing amorphous molecules. Sci China Chem, 2014, 57: 966–972

    Article  CAS  Google Scholar 

  9. Gao L, Zhang J, He C, Shen SL, Zhang Y, Liu HT, Sun QJ, Li YF. Synthesis and photovoltaic properties of a star-shaped molecule based on a triphenylamine core and branched terthiophene end groups. Sci China Chem, 2013, 56: 997–1003

    Article  CAS  Google Scholar 

  10. Ko DH, Tumbleston JR, Gadisa A, Aryal M, Liu YC, Lopez R, Samulski ET. Light-trapping nano-structures in organic photovoltaic cells. J Mater Chem, 2011, 21: 16293–16303

    Article  CAS  Google Scholar 

  11. Green MA, Pillai S. Harnessing plasmonics for solar cells. Nat Photon, 2012, 6: 130–132

    Article  CAS  Google Scholar 

  12. Weickert J, Dunbar RB, Hesse HC, Wiedemann W, Schmidt-Mende L. Nanostructured organic and hybrid solar cells. Adv Mater, 2011, 23: 1810–1828

    Article  CAS  Google Scholar 

  13. Ferry VE, Munday JN, Atwater HA. Design considerations for plasmonic photovoltaics. Adv Mater, 2010, 22: 4794–4808

    Article  CAS  Google Scholar 

  14. Dionne JA, Atwater HA. Plasmonics: metal-worthy methods and materials in nanophotonics. MRS Bull, 2012, 37: 717–724

    Article  CAS  Google Scholar 

  15. Hutter E, Fendler JH. Exploitation of localized surface Plasmon resonance. Adv Mater, 2004, 16: 1685–1706

    Article  CAS  Google Scholar 

  16. Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia YN. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev, 2006, 35: 1084–1094

    Article  CAS  Google Scholar 

  17. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res, 2008, 41: 1721–1730

    Article  CAS  Google Scholar 

  18. Cobley CM, Chen JY, Cho EC, Wang LV, Xia YN. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev, 2011, 40: 44–56

    Article  CAS  Google Scholar 

  19. Wu JL, Chen FC, Hsiao YS, Chien FC, Chen PL, Kuo CH, Huang MH, Hsu CS. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano, 2011, 5: 959–967

    Article  CAS  Google Scholar 

  20. Heo M, Cho H, Jung JW, Jeong JR, Park S, and Kim JY. High-performance organic optoelectronic devices enhanced by surface plasmon resonance. Adv Mater, 2011, 23: 5689–5693

    Article  CAS  Google Scholar 

  21. Fung DDS, Qiao LF, Choy WCH, Wang CD, Sha WEI, Xie FX, He SL. Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT:PSS layer. J Mater Chem, 2011, 21:16349–16356

    Article  CAS  Google Scholar 

  22. Kim CH, Cha SH, Kim SC, Song M, Lee J, Shin WS, Moon SJ, Bahng JH, Kotov NA, Jin SH. Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications. ACS Nano, 2011, 5: 3319–3325

    Article  CAS  Google Scholar 

  23. Yang J, You JB, Chen CC, Hsu WC, Tan HR, Zhang XW, Hong ZR, Yang Y. Plasmonic polymer tandem solar cell. ACS Nano, 2011, 5: 6210–6217

    Article  CAS  Google Scholar 

  24. Salvador M, MacLeod BA, Hess A, Kulkarni AP, Munechika K, Chen JIL, Ginger DS. Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells. ACS Nano, 2012, 6: 10024–10032

    Article  CAS  Google Scholar 

  25. Chen JY, Wu HC, Chiu YC, Chen WC. Plasmon-enhanced polymer photovoltaic device performance using different patterned Ag/PVP electrospun nanofibers. Adv Energy Mater, 2014, 4: 1301665

    Google Scholar 

  26. Wang DH, Kim JK, Lim GH, Park KH, Park O, Limand B, Park JH. Enhanced light harvesting in bulk heterojunction photovoltaic devices with shape-controlled Ag nanomaterials: Ag nanoparticles versus Ag nanoplates. RSC Adv, 2012, 2: 7268–7272

    Article  CAS  Google Scholar 

  27. Hsiao YS, Charan S, Wu FY, Chien FC, Chu CW, Chen PL, Chen FC. Improving the light trapping efficiency of plasmonic polymer solar cells through photon management. J Phys Chem C, 2012, 116: 20731–20737

    Article  CAS  Google Scholar 

  28. Oo TZ, Mathews N, Xing GC, Wu B, Xing BG, Wong LH, Sum TC, Mhaisalkar SG. Ultrafine gold nanowire networks as plasmonic antennae in organic photovoltaics. J Phys Chem C, 2012, 116: 6453–6458

    Article  CAS  Google Scholar 

  29. Chen XQ, Zuo LJ, Fu WF, Yan QX, Fan CC, Chen HZ. Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles. Sol Energy Mater Sol Cells, 2013, 111: 1–8

    Article  CAS  Google Scholar 

  30. Paz-Soldan D, Lee A, Thon SM, Adachi MM, Dong HP, Maraghechi P, Yuan MJ, Labelle AJ, Hoogland S, Liu K, Kumacheva E, Sargent EH. Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. Nano Lett, 2013, 13: 1502–1508

    CAS  Google Scholar 

  31. Baek SW, Noh J, Lee CH, Kim BS, Seo MK, Lee JY. Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method. Sci Rep, 2013, 3: 1726

    Google Scholar 

  32. Chen HC, Chou SW, Tseng WH, Chen WP, Liu CC, Liu C, Liu CL, Chen CH, Wu CI, Chou PT. Large AuAg alloy nanoparticles synthesized in organic media using a one-pot reaction: their applications for high-performance bulk heterojunction solar cells. Adv Funct Mater, 2012, 22: 3975–3984

    Article  CAS  Google Scholar 

  33. Baek SW, Park G, JNoh J, Cho C, Lee CH, Seo MK, Song H, Lee JY. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. ACS Nano, 2014, 8: 3302–3312

    Article  CAS  Google Scholar 

  34. Yang X, Xu MS, Qiu WM, Chen XQ, Deng M, Zhang JL, Iwai H, Watanabe E, Chen HZ. Graphene uniformly decorated with gold nanodots: in situ synthesis, enhanced dispersibility and applications. J Mater Chem, 2011, 21: 8096–8103

    Article  CAS  Google Scholar 

  35. Chuang MK, Lin SW, Chen FC, Chu CW, Hsu CS. Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices. Nanoscale, 2014, 6: 1573–1579

    Article  CAS  Google Scholar 

  36. Choi H, Ko SJ, Choi Y, Joo P, Kim T, Lee BR, Jung JW, Choi HJ, Cha M, Jeong JR, Hwang IW, Song MH, Kim BS, Kim JY. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat Photonics, 2013, 7: 732–738

    Article  CAS  Google Scholar 

  37. Chen X, Yang X, Fu WF, Xu MS, Chen HZ. Enhanced performance of polymer solar cells with a monolayer of assembled gold nanoparticle films fabricated by Langmuir-Blodgett technique. Mater Sci Eng B, 2013, 1: 53–59

    Article  Google Scholar 

  38. Jung K, Song HJ, Lee G, Ko Y, Ahn KJ, Choi H, Kim JY, Ha K, Song J, Lee JK, Lee C, Choi M. Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano, 2014, 8: 2590–2601

    Article  CAS  Google Scholar 

  39. Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ. Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed, 2011, 50: 5519–5523

    Article  CAS  Google Scholar 

  40. Wang DH, Park KH, Seo JH, Seifter J, Jeon JH, Kim JK, Park JH, Park OO, Heeger AJ. Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters. Adv Energy Mater, 2011, 1: 766–770

    Article  CAS  Google Scholar 

  41. Wang CCD, Choy WCH, Duan CH, Fung DDS, Sha WEI, Xie FX, Huang F, Cao Y. Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. J Mater Chem, 2012, 22: 1206–1211

    Article  CAS  Google Scholar 

  42. Jankovic V, Yang Y, You JB, Dou LT, Liu YS, Cheung P, Chang JP, Yang Y. Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics. ACS Nano, 2013, 7: 3815–3822

    Article  CAS  Google Scholar 

  43. Choi H, Lee JP, Ko SJ, Jung JW, Park H, Yoo S, Park O, Jeong JR, Park S, Kim JY. Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett, 2013, 13: 2204–2208

    Article  CAS  Google Scholar 

  44. Lim DC, Kim KD, Park SY, Hong EM, Seo HO, Lim JH, Lee KH, Jeong Y, Song C, Lee E, Kim YD, Cho S. Towards fabrication of high-performing organic photovoltaics: new donor-polymer, atomic layer deposited thin buffer layer and plasmonic effects. Energy Environ Sci, 2012, 5: 9803–9807

    Article  CAS  Google Scholar 

  45. Li XH, Choy WCH, Huo LJ, Xie FX, Sha WEI, Ding BF, Guo X, Li YF, Hou JH, You JB, Yang Y. Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater, 2012, 24: 3046–3052

    Article  CAS  Google Scholar 

  46. Yang X, Chueh CC, Li CZ, Yip CZ, Yin PP, Chen HZ, Chen WC, Jen AKY. High-efficiency polymer solar cells achieved by doping plasmonic metallic nanoparticles into dual charge selecting interfacial layers to enhance light trapping. Adv Energy Mater, 2013, 5: 666–673

    Article  CAS  Google Scholar 

  47. Yao K, Salvador M, Chueh CC, Xin XK, Xu YX, Quilettes DW, Hu T, Chen YW, Ginger DS, Jen AKY. A general route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv Energy Mater, 2014, 4: 1400206

    Google Scholar 

  48. Chen X, Jia BH, Saha JK, Cai BY, Stokes N, Qiao Q, Wang YQ, Shi ZR, Gu M. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett, 2012, 12: 2187–2192

    Article  CAS  Google Scholar 

  49. Xu Q, Liu F, Liu YX, Cui KY, Feng X, Zhang W, Huang YD. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles. Sci Rep, 2013, 3: 2112

    Google Scholar 

  50. Li XH, Choy WCH, Lu HF, Sha WEI, Ho AHP. Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv Funct Mater, 2013, 23: 2728–2735

    Article  CAS  Google Scholar 

  51. Lu LY, Luo ZQ, Xu T, Yu LP. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett, 2013, 13: 59–64

    Article  CAS  Google Scholar 

  52. Jayawardena KDGI, Rozanski LJ, Mills CA, Beliatis MJ, Nismy NA, Silva SRP. ‘Inorganics-in-Organics’: recent developments and outlook for 4G polymer solar cells. Nanoscale, 2013, 5: 8411–8427

    Article  CAS  Google Scholar 

  53. Zhao L, Lin ZQ. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells. Adv Mater, 2012, 24: 4353–4368

    Article  CAS  Google Scholar 

  54. Gao F, Ren SQ, Wang JP. The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy Environ Sci, 2013, 6: 2020–2040

    Article  CAS  Google Scholar 

  55. Fan X, Zhang ML, Wang XD, Yang FH, Meng XM. Recent progress in organic-inorganic hybrid solar cells. J Mater Chem A, 2013, 1: 8694–8709

    Article  CAS  Google Scholar 

  56. Fu WF, Shi Y, Qiu WM, Wang L, Nan YX, Shi MM, Li HY, Chen HZ. High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols. Phys Chem Chem Phys, 2012, 14: 12094–12098

    Article  CAS  Google Scholar 

  57. Fu WF, Shi Y, Wang L, Shi MM, Li HY, Chen HZ. A green, low-cost, and highly effective strategy to enhance the performance of hybrid solar cells: post-deposition ligand exchange by acetic acid. Sol Energy Mater Sol Cells, 2013, 117: 329–335

    Article  CAS  Google Scholar 

  58. Fu W, Chen X, Yang X, Wang L, Shi Y, Shi MM, Li HY, Jen AKY, Chen J, Cao Y, Chen HZ. Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells. Phys Chem Chem Phys, 2013, 15: 17105–17111

    Article  CAS  Google Scholar 

  59. Zhang D, Choy WCH, Xie FX, Sha WEI, Li XC, Ding BF, Zhang K, Huang F, Cao Y. Plasmonic electrically functionalized TiO2 for high-performance organic solar cells. Adv Funct Mater, 2013, 23: 4255–4261

    Article  CAS  Google Scholar 

  60. Xu MF, Zhu XZ, Shi XB, Liang J, Jin Y, Wang ZK, and Liao LS. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer. ACS Appl Mater Interfaces, 2013, 5: 2935–2942

    Article  CAS  Google Scholar 

  61. Xu XY, Kyaw AKK, Peng B, Du QG, Hong L, Demir HV, Wong TKS, Xiong QH, Sun XW. Enhanced efficiency of solution-processed small-molecule solar cells upon incorporation of gold nanospheres and nanorods into organic layers. Chem Commun, 2014, 50: 4451–4454

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, W. & Chen, H. Recent advances in plasmonic organic photovoltaics. Sci. China Chem. 58, 210–220 (2015). https://doi.org/10.1007/s11426-014-5219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5219-3

Keywords

Navigation