Skip to main content

Advertisement

Log in

Fusion energy

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Fusion energy is one of the options to contribute to the energy demand of future generations without adding to global warming. In this paper, we present the status of fusion energy research on the basis of magnetic confinement.

Fusion energy is one of the options to contribute to the energy demand of future generations without contributing to global warming. In this paper, we present the status of fusion energy research on the basis of magnetic confinement. In France, the first fusion reactor ITER is under construction. Its success will be measured on the expectation to deliver 500 MW thermal power—a factor of 10 above the power to maintain the energy producing process. ITER is based on the tokamak concept. In addition, Wendelstein 7-X, an ambitious stellarator, has recently started operation. Both confinement concepts—the tokamak and the stellarator—will be discussed along with general topics regarding fusion technology, operational safety, fusion waste, possible electricity costs, and roadmaps toward a fusion reactor as a power source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. ITER homepage: Available at: https://www.iter.org/ (accessed June 28, 2017).

  2. W7-X homepage: Available at: https://www.ipp.mpg.de/wendelstein7x (accessed June 28, 2017).

  3. IFMIF homepage: Available at: http://www.ifmif.org/ (accessed June 28, 2017).

  4. Europhysics News: Special issue on fusion 47, numbers 5&6, p. 19 ff (2016).

  5. Lawson J.D.: Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc., London, Sect. B 70, 6 (1957).

    Article  Google Scholar 

  6. Ikeda K.: Progress in the ITER physics basis. Nucl. Fusion 47, 1–414 (2007).

    Article  Google Scholar 

  7. Wesson J.: Tokamaks (Oxford University Press, Oxford, 2011); ISBN: 978 0198509227.

    Google Scholar 

  8. Boozer A.H.: Physics of magnetically confined plasmas. Rev. Mod. Phys. 76, 1071 (2005).

    Article  Google Scholar 

  9. Wagner F.: The history of research into improved confinement regimes. Eur. Phys. J. H, 1–27 (2017). doi: 10.1140/epjh/e2016-70064-9.

    Google Scholar 

  10. Biglary H., Diamond P.H., and Terry P.W.: Influence of sheared poloidal rotation on edge turbulence. Phys. Plasmas 2, 1 (2016).

    Google Scholar 

  11. Horton L. D.: JET, the largest tokamak on the eve of DT operation. Europhys. News 47(5&6), 25 (2016).

    Article  CAS  Google Scholar 

  12. National Fusion Research Institute homepage: Available at: https://www.nfri.re.kr/eng/pageView/74 (accessed June 28, 2017).

  13. EAST homepage: Available at: http://english.ipp.cas.cn/rh/east/ (accessed June 28, 2017).

  14. SST-1 homepage: Available at: http://dae.nic.in/?q=node/255 (accessed June 28, 2017).

  15. JT60-SA homepage: Available at: http://www.jt60sa.org/b/index.htm (accessed June 28, 2017).

  16. LHD homepage: Available at: http://www.lhd.nifs.ac.jp/en/ (accessed June 28, 2017).

  17. Campbell J. D.: The first fusion reactor, ITER. Europhys. News 47(5&6), 28 (2016).

    Article  CAS  Google Scholar 

  18. Klinger T.: A newcomer: The Wendelstein 7-X stellarator. Europhys. News 47(5&6), 35 (2016).

    Article  Google Scholar 

  19. Boozer A.H.: Guiding center drift equations. Phys. Fluids 23, 904 (1980).

    Article  Google Scholar 

  20. Nührenberg J. and Zille R.: Quasi-helically symmetric toroidal stellarators. Phys. Lett. A 129, 113 (1988).

    Article  Google Scholar 

  21. HSX homepage: Available at: http://www.hsx.wisc.edu/ (accessed June 28, 2017).

  22. He-J homepage: Available at: http://www.iae.kyoto-u.ac.jp/en/joint/heliotron-j.html (accessed June 28, 2017).

  23. Hirsch M., Baldzuhn J., Beidler C., Brakel R., Burhenn R., Dinklage A., Ehmler H., Endler M., Erckmann V., Feng Y., Geiger J., Giannone L., Grieger G., Grigull P., Hartfuß H-J., Hartmann D., Jaenicke R., König R., Laqua H.P., Maaßberg H., McCormick K., Sardei F., Speth E., Stroth U., Wagner F., Weller A., Werner A., Wobig H., and Zoletnik S., and for the W7-AS Team: Major results from the stellarator Wendelstein 7-AS. Plasma Phys. Controlled Fusion 50, 053001 (2008).

    Article  Google Scholar 

  24. Igitkhanov Y., Andreeva T., Beidler C.D., Harmeyer E., Herrnegger F., Kisslinger J., Wagner F., and Wobig H.: Status of HELIAS reactor studies. Fusion Eng. Des. 81, 2695 (2006).

    Article  CAS  Google Scholar 

  25. Ward D. J.: Fusion as a future energy source. Europhys. News 47(5&6), 32 (2016).

    Article  CAS  Google Scholar 

  26. Knaster J., Moeslang A., and Muroga T.: Materials research for fusion. Nat. Phys. 12, 424 (2016).

    Article  CAS  Google Scholar 

  27. Rieth M., Schirra M., Falkenstein A., Graf P., Heger S., Kempe H., Lindau R., and Zimmermann H.: EUROFER97 Tensile, Charpy, Creep and Structural Tests (KIT, Wissenschaftliche Berichte, FZK6911, 2003).

    Google Scholar 

  28. Kovari M., Coleman M., Cristescu I., and Smith R.: Tritium resources available for fusion reactors. Nucl. Fusion 58, 026010 (2018).

    Article  Google Scholar 

  29. Bustreo C., Bolzonella T., and Zollino G.: The Monte Carlo approach to the economics of a DEMO-like power plant. Fusion Eng. Des. 98–99, 2108 (2015).

    Article  Google Scholar 

  30. Donné T.: Challanges on the road toward fusion electricity. Europhys. News 47(5&6), 20 (2016).

    Article  Google Scholar 

  31. Romanelli F., Barabaschi P., Borba D., Federici G., Neu R., Stork D., Horton L., and Zohm H.: Fusion Electricity: A Roadmap to the Realisation of Fusion Energy (European Fusion Development Agreement, EFDA, 2012); ISBN: 978-3-00-040720-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Wagner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, F. Fusion energy. MRS Energy & Sustainability 5, 7 (2018). https://doi.org/10.1557/mre.2018.8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2018.8

Keywords

Navigation