Skip to main content

Fusion Energy

  • Reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

Nuclear fusion is the power of the sun and all shining stars in the universe. Controlled nuclear fusion toward ultimate energy sources for human beings has been developed intensively worldwide for this half a century. A fusion power plant is free from concern of exhaustion of fuels and production of CO2. Therefore it has a very attractive potential to be an eternal fundamental energy source and will contribute to resolving problems of climate change. On the other hand, unresolved issues in physics and engineering still remain. It will take another several decades to realize a fusion power plant by integration of advanced science and engineering such as control of high-temperature plasma exceeding 100 million °C and breeding technology of tritium by generated neutrons. The research and development has just entered the phase of engineering demonstration to extract 500 MW of thermal energy from fusion reaction in the 2020s. The demonstration of electric power generation is targeted in the 2040s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Atzeni S, Meyer-Ter-Vehn J (2004) The physics of inertial fusion. Clarendon, Oxford

    Book  Google Scholar 

  • Aymar R (2001) Summary of the ITER final design report. ITER document G A0 FDR 4 01-06-28 R 0.2, Garching ITER joint work site, 9 July 2001

    Google Scholar 

  • Bell M et al (1995) Overview of DT results from TFTR. Nucl Fusion 35:1429–1436

    Article  Google Scholar 

  • Bethe H, Peierls R (1935) Quantum theory of the diplon. Proc R Soc Lond A 148:146–156

    Article  MATH  Google Scholar 

  • Bosch HS et al (2010) Construction of wendelstein 7-X engineering a steady-state stellarator. IEEE Trans Plasma Sci 38:265–273

    Article  Google Scholar 

  • Braams CM, Stott PE (2002) Nuclear fusion: half a century of magnetic confinement fusion research. IOP, London

    Book  Google Scholar 

  • Chen FF (2011) An indispensable truth, how fusion power can save the planet. Springer, London

    Book  Google Scholar 

  • Dinklage A et al (2007) Physics model assessment of energy confinement time scaling in stellarators. Nucl Fusion 47:1265–1273

    Article  Google Scholar 

  • Eliezer S, Eliezer Y (2001) The fourth state of matter: an introduction to plasma science. IOP, London

    Book  MATH  Google Scholar 

  • Garin P et al (2009) Main baseline of IFMIF/EVEDA project. Fusion Eng Des 84:259–264

    Article  Google Scholar 

  • Giancarli L et al (2006) Breeding blanket modules testing in ITER: an international program on the way to DEMO. Fusion Eng Des 81:393–405

    Article  Google Scholar 

  • Gibson A (1998) Deuterium-tritium plasmas in the Joint European Torus (JET): behavior and implications. Phys Plasmas 5:1839–1846

    Article  Google Scholar 

  • Green BJ (2003) ITER: burning plasma physics experiment. Plasma Phys Cont Fusion 45:687–706

    Article  Google Scholar 

  • Hawryluk RJ et al (1998) Fusion plasma experiments on TFTR: a 20 year retrospective. Phys Plasmas 5:1577–1589

    Article  Google Scholar 

  • Ikeda K (2010) ITER on the road to fusion energy. Nucl Fusion 50:014002

    Article  Google Scholar 

  • Ikeda K et al (2007) ITER progress in the ITER physics basis. Nucl Fusion 47(E01):S1–S414

    Google Scholar 

  • Imagawa S et al (2010) Overview of LHD superconducting magnet system and its 10-year operation. Fusion Sci Technol 58:560–570

    Google Scholar 

  • Ishida S et al (1999) JT-60U high performance regime. Nucl Fusion 39:1211–1226

    Article  Google Scholar 

  • Ishida S et al (2010) Status and prospect of the JT-60SA project. Fusion Eng Des 85:2070–2079

    Article  Google Scholar 

  • ITER Physics Basis Editors (1999) ITER Physics Basis. Nucl Fusion 39:2137–2638

    Article  Google Scholar 

  • Jacquinot J (2010) Fifty years in fusion and the way forward. Nucl Fusion 50:014001

    Article  Google Scholar 

  • Kato T et al (2001) First test results for the ITER central solenoid model coil. Fusion Eng Des 56–57:59–70

    Article  Google Scholar 

  • Katoh Y et al (2007) Current status and critical issues for development of SiC composites for fusion applications. J Nucl Mater 367–370:659–671

    Article  Google Scholar 

  • Kaye and Laby Online (2005) Tables of physical & chemical constants, 16th edn. 2.1.4 Hygrometry version 1.0. Available at http://www.kayelaby.npl.co.uk/

  • Kikuchi M (2011) Frontiers in fusion research. Springer, London

    Book  Google Scholar 

  • Koizumi N et al (2005) Development of advanced Nb3Al superconductors for a fusion demo plant. Nucl Fusion 45:431–438

    Article  Google Scholar 

  • Komori A et al (2010) Goal and achievements of large helical device project. Fusion Sci Technol 58:1–11

    Article  Google Scholar 

  • Lawson JD (1957) Some criteria for a power producing thermonuclear reactor. Proc Phys Soc Sect B 70:6–10

    Article  Google Scholar 

  • Lie J, Zhang J, Duan X (2010) Magnetic fusion development for global warming suppression. Nucl Fusion 50:014005

    Article  Google Scholar 

  • Martone M (ed) (1996) IFMIF-international fusion materials irradiation facility conceptual design activity, final report. ENEA frascati report, RT/ERG/FUS/96/11

    Google Scholar 

  • Masionnier D et al (2005) A conceptual study of commercial fusion power plants, final report of the European fusion power plant conceptual study (PPCS). European fusion development agreement, EFDA(05)-27/4.10. Available at http://www.efda.org/eu_fusion_programme/downloads/scientific_and_technical_publications/PPCS_overall_report_final.pdf

  • McCraken G, Stott P (2005) Fusion: the energy of the universe. Elsevier Academic, London

    Google Scholar 

  • Meade D (2010) 50 years of fusion research. Nucl Fusion 50:014004

    Article  Google Scholar 

  • Mima K (2010) Inertial fusion development: the path to global warming suppression. Nucl Fusion 50:014006

    Article  Google Scholar 

  • Mitchell N et al (2010) Status of the ITER magnets. Fusion Eng Des 84:113–121

    Article  Google Scholar 

  • Muroga T et al (2002) Vanadium alloys – overview and recent results. J Nucl Mater 307–311:547–554

    Article  Google Scholar 

  • Norgett MJ et al (1975) A proposed method of calculating displacement dose rates. Nucl Eng Des 33:50–54

    Article  Google Scholar 

  • Ohyama N et al (2009) Overview of JT-60U results towards the establishment of advanced tokamak operation. Nucl Fusion 49:104007

    Article  Google Scholar 

  • Pamera J, Solano ER (2001) From JET to ITER: preparing the next step in fusion research. EFDA-JET-PR(01)16, EFDA, Culham Science Centre, Abington

    Google Scholar 

  • Report of Japan Atomic Energy Commission in 2005. Japanese. Available at http://www.aec.go.jp/jicst/NC/senmon/kakuyugo2/siryo/kettei/houkoku051026/index.htm

  • Ross L (2010) Superconductivity: its role, its success and its setbacks in the large hadron collider of CERN. Supercond Sci Technol 23:034001

    Article  Google Scholar 

  • Sakharov AD, Leontovitch MA (eds) (1961) Plasma physics and the problem of controlled thermonuclear reactions, vol 1. Pergamon, London, p 21

    Google Scholar 

  • Spitzer L Jr et al (1954) Problems of the stellarator as a useful power source, NYO-6047; PM-S-14, Princeton University, N.J. Project Matterhorn

    Google Scholar 

  • Stacey WM (2010) Fusion: an introduction to the physics and technology of magnetic confinement fusion. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Team JET (1992) Fusion energy production from deuterium-tritium plasma in the JET tokamak. Nucl Fusion 32:187–203

    Article  Google Scholar 

  • Uo K (1961) The confinement of plasma by the heliotron magnetic field. J Phys Soc Jpn 16:1380–1395

    Article  MATH  Google Scholar 

  • Webster AJ (2003) Fusion: power for the future. Phys Educ 38:135–142

    Article  Google Scholar 

  • Wesson J (2004) Tokamaks, The international series of monographs on physics. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Yamada H et al (2009) 10 years of engineering and physics achievements by the large helical device project. Fusion Eng Des 84:186–193

    Article  Google Scholar 

  • Zinkle SJ (2005) Fusion material science: overview of challenges and recent progress. Phys Plasmas 12:058101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Yamada, H. (2017). Fusion Energy. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-14409-2_31

Download citation

Publish with us

Policies and ethics