Skip to main content

Advertisement

Log in

Status and challenge of Mg battery cathode

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Current performance of Mg battery cathode is reviewed. Perspective for research in this field is provided and discussed.

Mg battery has recently gathered more and more interest as a high energy density replacement of current Li-ion battery. Significant progress has been made in developing sustainable anode and novel electrolyte. However, the success of Mg battery still high demands the search of cathode material with high energy density, good rate capability, and nice cyclability. This current review focuses on the development of Mg battery cathode in the past 15 years. A detailed review about the performance and limitations of reported cathode material is provided. A perspective for this area is discussed with insights for future research direction. Three important areas that must be explored in this field in near future are suggested: the investigation of high capacity cathode, the study of hybrid ion battery, and deeper understanding about the magnesiation chemistry of the cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Table 2.
Figure 15.

Similar content being viewed by others

References

  1. Tarascon J-M. and Armand M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Google Scholar 

  2. Palomares V., Serras P., Villaluenga I., Hueso K.B., Carretero-Gonzalez J., and Rojo T.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012).

    CAS  Google Scholar 

  3. Yoo H.D., Shterenberg I., Gofer Y., Gershinsky G., Pour N., and Aurbach D.: Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013).

    CAS  Google Scholar 

  4. Lin M-C., Gong M., Lu B., Wu Y., Wang D-Y., Guan M., Angell M., Chen C., Yang J., Hwang B-J., and Dai H.: An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    CAS  Google Scholar 

  5. Matsui M.: Study on electrochemically deposited Mg metal. J. Power Sources 196, 7048–7055 (2010).

    Google Scholar 

  6. Aurbach D., Lu Z., Schechter A., Gofer Y., Gizbar H., Turgeman R., Cohen Y., Moskovich M., and Levi E.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    CAS  Google Scholar 

  7. Kim H.S., Arthur T.S., Allred G.D., Zajicek J., Newman J.G., Rodnyansky A.E., Oliver A.G., Boggess W.C., and Muldoon J.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011).

    Google Scholar 

  8. Liu T., Shao Y., Li G., Gu M., Hu J., Xu S., Nie Z., Chen X., Wang C., and Liu J.: A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. J. Mater. Chem. A 2, 3430–3438 (2014).

    CAS  Google Scholar 

  9. Ling C., Barnejee D., and Matsui M.: Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012).

    CAS  Google Scholar 

  10. Jäckle M. and Groß A.: Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014).

    Google Scholar 

  11. Novak P., Imhof R., and Haas O.: Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium? Electrochim. Acta 45, 35–367 (1999).

    Google Scholar 

  12. Singh N., Arthur T.S., Ling C., Matsui M., and Mizuno F.: A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149–151 (2013).

    CAS  Google Scholar 

  13. Mizuno F., Singh N., Arthur T.S., Fanson P.T., Ramanathan M., Benmayza A., Prakash J., Liu Y-S., Glans P-A., and Guo J.: Understanding and overcoming the challenges posed by electrode/electrolyte interfaces in rechargeable magnesium batteries. Front. Energy Res. 2, 46 (2014).

    Google Scholar 

  14. Muldoon J., Bucur C.B., Oliver A.G., Sugimoto T., Matsui M., Kim H.S., Allred G.D., Zajicek J., and Kotani Y.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012).

    CAS  Google Scholar 

  15. Muldoon J., Bucur C.B., Oliver A.G., Zajicek J., Allred G.D., and Boggess W.C.: Corrosion of magnesium electrolytes: Chlorides—The culprit. Energy Environ. Sci. 6, 482–487 (2013).

    CAS  Google Scholar 

  16. Muldoon J., Bucur C.B., and Gregory T.: Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 114, 11683–11720 (2014).

    CAS  Google Scholar 

  17. Levi E., Lancry E., Mitelman A., Aurbach D., Ceder G., Morgan D., and Isnard O.: Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). 1. Crystal structure of the sulfides. Chem. Mater. 18, 5492–5503 (2006).

    CAS  Google Scholar 

  18. Levi E., Lancry E., Mitelman A., Aurbach D., Isnard O., and Djurado D.: Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). 2. The crystal structure of triclinic MgMo6Se8. Chem. Mater. 18, 3705–3714 (2006).

    CAS  Google Scholar 

  19. Levi E., Mitelman A., Isnard O., Brunelli M., and Aurbach D.: Phase diagram of Mg insertion into Chevrel phases, MgxMo6T8 (T = S, Se). 3. The crystal structure of triclinic Mg2Mo6Se8. Inorg. Chem. 47, 1975–1983 (2006).

    Google Scholar 

  20. Levi E., Gofer Y., and Aurbach D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22, 860–868 (2010).

    CAS  Google Scholar 

  21. Levi E., Levi M.D., Chasid O., and Aurbach D.: A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J. Electroceram. 22, 13–19 (2009).

    CAS  Google Scholar 

  22. Lancry E., Levi E., Gofer Y., Levi M., Salitra G., and Aurbach D.: Leaching chemistry and the performance of the Mo6S8 cathodes in rechargeable Mg batteries. Chem. Mater. 16, 2832–2838 (2004).

    CAS  Google Scholar 

  23. Woo S-G., Yoo J-Y., Cho W., Park M-S., Kim K.J., Kim J-H., Kim J-S., and Kim Y-J.: Copper incorporated CuxMo6S8 (x = 1) Chevrel-phase cathode materials synthesized by chemical intercalation process for rechargeable magnesium batteries. RSC Adv. 4, 59048–59055 (2014).

    CAS  Google Scholar 

  24. Choi S-H., Kim J-S., Woo S-G., Cho W., Choi S.Y., Choi J., Lee K-T., Park M-S., and Kim Y-J.: Role of Cu in Mo6S8 and Cu mixture cathodes for magnesium ion batteries. ACS Appl. Mater. Interfaces 7, 7016–7024 (2015).

    CAS  Google Scholar 

  25. Ryu A., Park M-S., Cho W., Kim J-S., and Kim Y-J.: Size-controlled Chevrel Mo6S8 as cathode material for Mg rechargeable battery. Bull. Korean Chem. Soc. 34, 3033–3038 (2013).

    CAS  Google Scholar 

  26. Saha P., Jampani P.H., Datta M.K., Okoli C.U., Manivannan A., and Kumta P.N.: A convenient approach to Mo6S8 Chevrel phase cathode for rechargeable magnesium battery. J. Electrochem. Soc. 161, A593–A598 (2014).

    CAS  Google Scholar 

  27. Cheng Y., Parent L.R., Shao Y., Wang C., Sprenkle V.L., Li G., and Liu J.: Facile synthesis of chevrel phase nanocubes and their applications for multivalent energy storage. Chem. Mater. 26, 4904–4907 (2014).

    CAS  Google Scholar 

  28. Zhang R., Mizuno F., and Ling C.: Fullerenes: Non-transition metal clusters as rechargeable magnesium battery cathodes. Chem. Commun. 51, 1108–1111 (2015).

    CAS  Google Scholar 

  29. Taniguchi K., Yoshino T., Gu Y., Katsura Y., and Takagi H.: Reversible electrochemical insertion/extraction of Mg and Li ions for orthorhombic Mo9Se11 with cluster structure. J. Electrochem. Soc. 162, A198–A202 (2015).

    CAS  Google Scholar 

  30. Zhang R., Yu X., Nam K-W., Ling C., Arthur T.S., Song W., Knapp A.M., Erlic S.N., Yang X-Q., and Matsui M.: a-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012).

    CAS  Google Scholar 

  31. Arthur T.S., Zhang R., Ling C., Glans P-A., Fan X., Guo J., and Mizuno F.: Understanding the electrochemical mechanism of K-aMnO2 for magnesium battery cathodes. ACS Appl. Mater. Interfaces 6, 7004–7008 (2014).

    CAS  Google Scholar 

  32. Zhang R., Arthur T.S., Ling C., and Mizuno F.: Manganese dioxides as rechargeable magnesium battery cathode: Synthetic approach to understand magnesiation process. J. Power Sources 282, 630–638 (2015).

    CAS  Google Scholar 

  33. Ling C., Zhang R., Arthur T.S., and Mizuno F.: How general is the conversion reaction in Mg battery cathode: A case study of the magnesiation of a-MnO2. Chem. Mater. 27, 5799–5807 (2015).

    CAS  Google Scholar 

  34. Rasul S., Suzuki S., Yamaguchi S., and Miyayama M.: High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 82, 243–249 (2012).

    CAS  Google Scholar 

  35. Rasul S., Suzuki S., Yamaguchi S., and Miyayama M.: Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries. Electrochim. Acta 110, 247–252 (2013).

    CAS  Google Scholar 

  36. Kim J-S., Chang W-S., Kim R-H., Kim D-Y., Han D-W., Lee K-H., Lee S-S., and Doo S-G.: High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries. J. Power Sources 273, 210–215 (2015).

    CAS  Google Scholar 

  37. Ling C. and Mizuno F.: Capture lithium in aMnO2: Insights from first principles. Chem. Mater. 24, 3943–3951 (2012).

    CAS  Google Scholar 

  38. Ling C. and Mizuno F.: Phase stability of post-spinel compound AMn2O4 (A = Li, Na, or Mg) and its application as a rechargeable battery cathode. Chem. Mater. 25, 3062–3071 (2013).

    CAS  Google Scholar 

  39. Jiao L., Yuan H., Wang Y., Cao J., and Wang Y.: Mg intercalation properties into open-ended vanadium oxide nanotubes. Electrochem. Commun. 7, 431–436 (2005).

    CAS  Google Scholar 

  40. Imamura D., Miyayama M., Hibino M., and Kudo T.: Mg intercalation properties into V2O5 gel/Carbon composites under high-rate condition. J. Electrochem. Soc. 150, a753–a758 (2003).

    CAS  Google Scholar 

  41. Imamura D. and Miyayama M.: Characterization of magnesium-intercalated V2O5/carbon composites. Solid State Ionics 161, 173–180 (2003).

    CAS  Google Scholar 

  42. Gershinsky G., Yoo H.D., Gofer Y., and Aurbach D.: Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29, 10964–10972 (2013).

    CAS  Google Scholar 

  43. Zhou B., Shi H., Cao R., Zhang X., and Jiang Z.: Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode. Phys. Chem. Chem. Phys. 16, 18578–18585 (2014).

    CAS  Google Scholar 

  44. Wang Z., Su Q., and Deng H.: Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: An ab initio study. Phys. Chem. Chem. Phys. 15, 8705–8709 (2013).

    CAS  Google Scholar 

  45. Sutto T.E. and Duncan T.T.: Electrochemical and structural characterization of Mg ion intercalation into Co3O4 using ionic liquid electrolytes. Electrochim. Acta 80, 413–417 (2012).

    CAS  Google Scholar 

  46. Sutto T.E. and Duncan T.T.: Electrochemical and structural characterization of Mg ion intercalation into RuO2 using an ionic liquid electrolyte. Electrochim. Acta 79, 170–174 (2012).

    CAS  Google Scholar 

  47. Ichitsudo T., Adachi T., Yagi S., and Doi T.: Potential positive electrodes for high-voltage magnesium-ion batteries. J. Mater. Chem. 21, 11764–11772 (2011).

    Google Scholar 

  48. Liu M., Rong Z., Malik R., Canepa P., Jain A., Ceder G., and Persson K.A.: Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8, 964–974 (2015).

    CAS  Google Scholar 

  49. Kim C., Philips P.J., Key B., Yi T., Nordlund D., Yu Y-S., Bayliss R.D., Han S-D., He M., Zhang Z., Burrell A.K., Klie R.F., and Cabana J.: Direct observation of reversible magnesium ion intercalation into a spinel oxide host. Adv. Mater. 27, 3377–3384 (2015).

    CAS  Google Scholar 

  50. Padhi A.K., Nanjundaswamy K.S., and Goodenough J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    CAS  Google Scholar 

  51. Feng Z., Yang J., NuLi Y., Wang J., Wang X., and Wang Z.: Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4. Electrochem. Commun. 10, 1291–1294 (2008).

    CAS  Google Scholar 

  52. NuLi Y., Yang J., Li Y., and Wang J.: Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem. Commun. 46, 3794–3796 (2010).

    CAS  Google Scholar 

  53. NuLi Y., Yang J., Wang J., and Li Y.: Electrochemical intercalation of Mg2+ in magnesium manganese silicate and its application as high-energy rechargeable magnesium battery cathode. J. Phys. Chem. C 113, 12594–12597 (2009).

    CAS  Google Scholar 

  54. Li Y., NuLi Y., Yang J., Yilinuer T., and Wang J.: MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries. Chin. Sci. Bull. 56, 386–390 (2011).

    CAS  Google Scholar 

  55. Sun J.Z.: Preparation and characterization of novel positive electrode material for magnesium cells. Monatsh. Chem. 145, 103–106 (2014).

    CAS  Google Scholar 

  56. NuLi Y., Zheng Y., Wang Y., Yang J., and Wang J.: Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. J. Mater. Chem. 21, 12437–12443 (2011).

    CAS  Google Scholar 

  57. Huang Z-D., Masese T., Orikasa Y., Mori T., Minat T., Tassel C., Kobayashi Y., Kageyama H., and Uchimoto Y.: MgFePO4F as a feasible cathode material for magnesium batteries. J. Mater. Chem. A 2, 11578–11582 (2014).

    CAS  Google Scholar 

  58. Orikasa Y., Masese T., Koyama Y., Mori T., Hattori M., Yamamoto K., Okado T., Huang Z-D., Minato T., Tassel C., Kim J., Kobayashi Y., Abe T., Kageyama H., and Uchimoto Y.: High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 4, 5622 (2014).

    CAS  Google Scholar 

  59. Ling C., Banerjee D., Song W., Zhang M., and Matsui M.: First-principles study of the magnesiation of olivines: Redox reaction mechanism, electrochemical and thermodynamic properties. J. Mater. Chem. 22, 13517–13523 (2012).

    CAS  Google Scholar 

  60. Wu J., Gao G., Wu G., Liu B., Yang H., Zhou X., and Wang J.: Tavorite-FeSO4F as a potential cathode material for Mg ion batteries: A first principles calculation. Phys. Chem. Chem. Phys. 16, 22974–22978 (2014).

    CAS  Google Scholar 

  61. Wu J., Gao G., Wu G., Liu B., Yang H., Zhou X., and Wang J.: MgVPO4F as a one-dimensional Mg-ion conductor for Mg ion battery positive electrode: A first principles calculation. RSC Adv. 4, 15014–15017 (2014).

    CAS  Google Scholar 

  62. Liang Y., Feng R., Yang S., Ma H., Liang J., and Chen J.: Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 23, 640–643 (2011).

    CAS  Google Scholar 

  63. Yang S., Li D., Zhang T., Tao Z., and Chen J.: First-principles study of zigzag MoS2 nanoribbon as a promising cathode material for rechargeable Mg batteries. J. Phys. Chem. C 116, 1307–1312 (2012).

    CAS  Google Scholar 

  64. Li X-L. and Li Y-D.: MoS2 nanostructures: Synthesis and electrochemical Mg2+ intercalation. J. Phys. Chem. B 108, 13893–13900 (2004).

    CAS  Google Scholar 

  65. Doe R.E., Downie C.M., Fischer C., Lane G.H., Morgan D., Nevin J., Ceder G., Persson K.A., and Eaglesham D.: Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells. U.S. Patent No. 2014/0106214 A1, 2014.

    Google Scholar 

  66. Liang Y., Yoo H.D., Li Y., Shuai J., Calderon H.A., Hernandez F.C.R., Grabow L.C., and Yao Y.: Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15, 2194–2202 (2015).

    CAS  Google Scholar 

  67. Liu B., Luo T., Mu G., Wang X., Chen D., and Shen G.: Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 9, 8051–8058 (2013).

    Google Scholar 

  68. Shiga T., Hase Y., Kato Y., Inoue M., and Takechi K.: A rechargeable non-aqueous Mg–O2 battery. Chem. Commun. 49, 9152–9154 (2013).

    CAS  Google Scholar 

  69. Shiga T., Hase Y., Yagi Y., Takahashi N., and Takechi K.: Catalytic cycle employing a TEMPO–anion complex to obtain a secondary Mg–O2 battery. J. Phys. Chem. Lett. 5, 1648–1652 (2014).

    CAS  Google Scholar 

  70. Zhao-Karger Z., Zhao X., Wang D., Diemant T., Behm R.J., and Fichtner M.: Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 5, 1401155 (2014).

    Google Scholar 

  71. Zhang R., Ling C., and Mizuno F.: A conceptual magnesium battery with ultrahigh rate capability. Chem. Commun. 51, 1487–1490 (2015).

    CAS  Google Scholar 

  72. Zhao X., Li Q., Zhao-Karger Z., Gao P., Fink K., Shen X., and Fichtner M.: Magnesium anode for chloride ion batteries. ACS Appl. Mater. Interfaces 6, 10997–11000 (2014).

    CAS  Google Scholar 

  73. Cheng Y., Shao Y., Zhang J-G., Sprenkle V.L., Liu J., and Li G.: High performance batteries based on hybrid magnesium and lithium chemistry. Chem. Commun. 50, 9644–9646 (2014).

    CAS  Google Scholar 

  74. Cho J-H., Aykol M., Kim S., Ha J-H., Wolverton C., Chung K.Y., Kim K-B., and Cho B.W.: Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 136, 16116–16119 (2014).

    CAS  Google Scholar 

  75. Yagi S., Ichitsubo T., Shirai Y., Yanai S., Doi T., Murase K., and Matsubara E.: A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2, 1144–1149 (2014).

    CAS  Google Scholar 

  76. Gao T., Han F., Zhu Y., Suo L., Luo C., Xu K., and Wang C.: Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 5, 1401507 (2015).

    Google Scholar 

  77. Amir N., Vestfrid Y., Chusid O., Gofer Y., and Aurbach D.: Progress in nonaqueous magnesium electrochemistry. J. Power Sources 174, 1234–1240 (2007).

    CAS  Google Scholar 

  78. Ling C., Chen J., and Mizuno F.: First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: The important role of ionic radius. J. Phys. Chem. C 117, 21158–21165 (2013).

    CAS  Google Scholar 

  79. Wang R.Y., Wessells C.D., Huggins R.A., and Cui Y.: Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748–5752 (2013).

    CAS  Google Scholar 

  80. Mizuno Y., Okubo M., Hosono E., Kudo T., Oh-ishi K., Okazawa A., Kojima N., Kurono R., Nishimura S., and Yamada A.: Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. J. Mater. Chem. A 1, 13055–13059 (2013).

    CAS  Google Scholar 

  81. Huie M.M., Bock D.C., Takeuchi E.S., Marschilok A.C., and Takeuchi K.J.: Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15–27 (2015).

    CAS  Google Scholar 

  82. Hautier G., Jain A., Mueller T., Moore C., Ong S.P., and Ceder G.: Designing multielectron lithium-ion phosphate cathodes by mixing transition metals. Chem. Mater. 25, 2064–2074 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Ling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Ling, C. Status and challenge of Mg battery cathode. MRS Energy & Sustainability 3, 1 (2016). https://doi.org/10.1557/mre.2016.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2016.2

Keywords

Navigation