Skip to main content
Log in

Electrospinning and post-drawn processing effects on the molecular organization and mechanical properties of polyacrylonitrile (PAN) nanofibers

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This paper reports the molecular organization and mechanical properties of electrospun, post-drawn polyacrylonitrile (PAN) nanofibers. Without post-drawing, the polymer chain was kinked and oriented in hexagonal crystalline structures. Immediate post-drawing in the semi-solid state disrupted the crystal structures and chain kink at maximum draw ratio. Structural re-orientation at maximum draw resulted in a 500% increase in Young’s modulus and a 100% increase in ultimate tensile strength. By applying post-drawing to electrospinning it may be possible to obtain PAN fibers and PAN-derived carbon fibers with enhanced mechanical properties compared to available fabrication technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. L. Zhang, A. Aboagye, A. Kelkar, C. Lai, and H. Fong: A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49, 463–480 (2013).

    Article  Google Scholar 

  2. E. Fitzer: Pan-based carbon fibers—present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon. N. Y. 27, 621–645 (1989).

    Article  Google Scholar 

  3. A.A. Griffith: The phenomena of rupture and flow in solids. Transactions of the ASM 61, 855–906 (1968).

    Google Scholar 

  4. X. Zeng, J. Hu, J. Zhao, Y. Zhang, and D. Pan: Investigating the jet stretch in the wet spinning of PAN fiber. J. Appl. Polym. Sci. 106, 2267–2273 (2007).

    Article  CAS  Google Scholar 

  5. R.W. Moncrieff: Man-made fibres. (1975).

    Google Scholar 

  6. X. Wang, K. Zhang, M. Zhu, B.S. Hsiao, and B. Chu: Enhanced mechanical performance of self-bundled electrospun fiber yarns via post-treatments. Macromol. Rapid Commun. 29, 826–831 (2008).

    Article  CAS  Google Scholar 

  7. D.H. Reneker, A.L. Yarin, H. Fong, and S. Koombhongse: Bending instability of electrically charged liquid jets of polymer solutions in electrospin-ning. J. Appl. Phys. 87, 4531–4547 (2000).

    Article  CAS  Google Scholar 

  8. Z. Xie, H. Niu, and T. Lin: Continuous polyacrylonitrile nanofiber yarns: preparation and dry-drawing treatment for carbon nanofiber production. RSC Adv. 5, 15147–15153 (2015).

    Article  CAS  Google Scholar 

  9. S.N. Arshad, M. Naraghi, and I. Chasiotis: Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon. N. Y. 49, 1710–1719 (2011).

    Article  CAS  Google Scholar 

  10. J. Yao, C.W. Bastiaansen, and T. Peijs: High strength and high modulus electrospun nanofibers. Fibers 2, 158–186 (2014).

    Article  Google Scholar 

  11. O.P. Bahl, R.B. Mathur, and K.D. Kundra: Structure of PAN fibres and its relationship to resulting carbon fibre properties. Fibre Sci. Technol. 15, 147–151 (1981).

    Article  CAS  Google Scholar 

  12. D. Sawai, Y. Fujii, and T. Kanamoto: Development of oriented morphology and tensile properties upon superdawing of solution-spun fibers of ultrahigh molecular weight poly(acrylonitrile). Polymer 47, 4445–4453 (2006).

    Article  CAS  Google Scholar 

  13. S.F. Fennessey and R.J. Farris: Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 45, 4217–4225 (2004).

    Article  CAS  Google Scholar 

  14. D.A. Brennan, D. Jao, M.C. Siracusa, A.R. Wilkinson, X. Hu, and V.Z. Beachley: Concurrent collection and post-drawing of individual electro-spun polymer nanofibers to enhance macromolecular alignment and mechanical properties. Polymer 103, 243–250 (2016).

    Article  CAS  Google Scholar 

  15. J.L. White and J.E. Spuiell: The specification of orientation and its development in polymer processing. Polymer Eng. Sci. 23, 247–256 (1983).

    Article  CAS  Google Scholar 

  16. M. Naraghi, S.N. Arshad, and I. Chasiotis: Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofib-ers. Polymer 52, 1612–1618 (2011).

    Article  CAS  Google Scholar 

  17. J.C. Chen: Modification of polyacrylonitrile (PAN) carbon fiber precursor stretching in DMF. Carbon. N. Y. 40, 20 (2001).

    Google Scholar 

  18. J.R. Fried: Polymer Science and technology (Pearson Education, Upper Saddle River, NJ, 2014).

    Google Scholar 

  19. R. Young and P. Lovell: Introduction to Polymers. (2011).

    Book  Google Scholar 

  20. C. Bohn, J. Schaefgen, and W. Statton: Laterally ordered polymers: poly-acrylonitrile and poly (vinyl trifluoroacetate). J. Polym. Sci., Part A: Polym. Chem. 55, 531–549 (1961).

    CAS  Google Scholar 

  21. X.D. Liu and W. Ruland: X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules 26, 3030–3036 (1993).

    Article  CAS  Google Scholar 

  22. Z. Bashir: The hexagonal mesophase in atactic polyacrylonitrile: a new interpretation of the phase transitions in the polymer. J. Macromol. Sci., Part B 40, 41–67 (2001).

    Article  Google Scholar 

  23. V.F. Anghelina, I.V. Popescu, A. Gaba, I.N. Popescu, V. Despa, and D. Ungureanu: Structural analysis of PAN fiber by X-ray diffraction. J. Sci. Arts 10, 89 (2010).

    Google Scholar 

  24. Z. Song, X. Hou, L. Zhang, and S. Wu: Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electro-spun partially aligned polyacrylonitrile (PAN) nanocomposites. Materials. (Basel) 4, 621–632 (2011).

    Article  CAS  Google Scholar 

  25. D. Esrafilzadeh, R. Jalili, and M. Morshed: Crystalline order and mechanical properties of as-electrospun and post-treated bundles of uniaxially aligned polyacrylonitrile nanofiber. J. Appl. Polym. Sci. 110, 3014–3022 (2008).

    Article  CAS  Google Scholar 

  26. T. Oota, T. Kunugi, and K. Yabuki: High Strength and High Modulus Fibers (Kyouritsu, Tokyo, 1988).

    Google Scholar 

  27. C. Lai, G. Zhong, Z. Yue, G. Chen, L. Zhang, A. Vakili, Y. Wang, L. Zhu, J. Liu, and H. Fong: Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun poly-acrylonitrile copolymer nanofibers. Polymer 52, 519–528 (2011).

    Article  CAS  Google Scholar 

  28. S.Z. Wu, F. Zhang, X.X. Hou, and X.P. Yang: Stretching-induced Orientation for Improving the Mechanical Properties of Electrospun Polyacrylonitrile Nanofiber Sheet (Trans Tech Publ., Switzerland, 2008) pp. 1169–1172.

    Google Scholar 

  29. S.-Y. Gu, Q.-L. Wu, J. Ren, and G.J. Vancso: Mechanical properties of a single electrospun fiber and its structures. Macromol. Rapid Commun. 26, 716–720 (2005).

    Article  CAS  Google Scholar 

  30. N. An, Q. Xu, L.H. Xu, and S.Z. Wu: Orientation Structure and Mechanical Properties of Polyacrylonitrile precursors (Trans Tech Publ., Switzerland, 2006) pp. 383–386.

    Google Scholar 

  31. C.-C. Liao, C.-C. Wang, C.-Y. Chen, and W.-J. Lai: Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating visco-elastic jet for improving the mechanical properties. 52, 2263–2275 (2011).

    CAS  Google Scholar 

Download references

Acknowledgment

This work was made possible by funding from the National Science Foundation (NSF1561966 & NSF1653329) and the United States Army Research Laboratory (W911NF-17-2-0227)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vince Z. Beachley.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.67

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brennan, D.A., Shirvani, K., Rhoads, C.D. et al. Electrospinning and post-drawn processing effects on the molecular organization and mechanical properties of polyacrylonitrile (PAN) nanofibers. MRS Communications 9, 764–772 (2019). https://doi.org/10.1557/mrc.2019.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.67

Navigation