Skip to main content
Log in

ESPEI for efficient thermodynamic database development, modification, and uncertainty quantification: application to Cu–Mg

  • Artificial Intelligence Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The software package ESPEI has been developed for efficient evaluation of thermodynamic model parameters within the CALPHAD method. ESPEI uses a linear fitting strategy to parameterize Gibbs energy functions of single phases based on their thermochemical data and refines the model parameters using phase equilibrium data through Bayesian parameter estimation within a Markov Chain Monte Carlo machine learning approach. In this paper, the methodologies employed in ESPEI are discussed in detail and demonstrated for the Cu–Mg system down to 0 K using unary descriptions based on segmented regression. The model parameter uncertainties are quantified and propagated to the Gibbs energy functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J.O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman: Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26, 273–312 (2002).

    Article  CAS  Google Scholar 

  2. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer and W.A. Oates: PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad Comput. Coupling Phase Diagrams Thermochem. 33, 328–342 (2009).

    Article  CAS  Google Scholar 

  3. A.T. Dinsdale: SGTE data for pure elements. Calphad 15, 317–425 (1991).

    Article  CAS  Google Scholar 

  4. S. Bigdeli, H. Mao and M. Selleby: On the third-generation Calphad databases: an updated description of Mn. Phys. Status Solidi. Basic Res. 252, 2199–2208 (2015).

    Article  CAS  Google Scholar 

  5. I. Roslyakova, B. Sundman, H. Dette, L. Zhang and I. Steinbach: Modeling of Gibbs energies of pure elements down to 0 K using segmented regression. Calphad Comput. Coupling Phase Diagrams Thermochem. 55, 165–180 (2016).

    Article  CAS  Google Scholar 

  6. N.H. Paulson, E. Jennings and M. Stan: Bayesian strategies for uncertainty quantification of the thermodynamic properties of materials, (2018). http://arxiv.org/abs/1809.07365.

    Google Scholar 

  7. Z. Li, H. Mao, P.A. Korzhavyi and M. Selleby: Thermodynamic re-assessment of the Co-Cr system supported by first-principles calculations. Calphad Comput. Coupling Phase Diagrams Thermochem. 52, 1–7 (2016).

    Article  Google Scholar 

  8. R. Mathieu, N. Dupin, J.-C. Crivello, K. Yaqoob, A. Breidi, J.-M. Fiorani, N. David and J.-M. Joubert: CALPHAD description of the Mo–Re system focused on the Sigma phase modeling. Calphad 43, 18–31 (2013).

    Article  CAS  Google Scholar 

  9. W.M. Choi, Y.H. Jo, D.G. Kim, S.S. Sohn, S. Lee and B.J. Lee: A thermodynamic modelling of the stability of Sigma phase in the Cr-Fe-Ni-V highentropy alloy system. J. Phase Equilibria Diffus. 39, 694–701 (2018).

    Article  CAS  Google Scholar 

  10. J.-M. Joubert and J.-C. Crivello: Non-Stoichiometry and Calphad modeling of Frank-Kasper Phases. Appl. Sci. 2, 669–681 (2012). doi: 10.3390/app2030669.

    Article  CAS  Google Scholar 

  11. C. Marker, S.L. Shang, J.C. Zhao and Z.K. Liu: Elastic knowledge base of bcc Ti alloys from first-principles calculations and CALPHAD-based modeling. Comput. Mater. Sci. 140, 121–139 (2017)

    Article  CAS  Google Scholar 

  12. Thermo-Calc Software and Databases, (2015).

  13. F. Tang and B. Hallstedt: Using the PARROT module of Thermo-Calc with the Cr–Ni system as example. Calphad Comput. Coupling Phase Diagrams Thermochem. 55, 260–269 (2016).

    Article  CAS  Google Scholar 

  14. E. Cockayne and A. van de Walle: Building effective models from sparse but precise data: application to an alloy cluster expansion model. Phys. Rev. B. 81, 012104 (2010).

    Article  Google Scholar 

  15. P. Honarmandi, T.C. Duong, S.F. Ghoreishi, D. Allaire and R. Arroyave: Bayesian uncertainty quantification and information fusion in CALPHAD-based thermodynamic modeling, ArXiv Prepr. ArXiv1806.05769. (2018).

    Google Scholar 

  16. S. Shang, Y. Wang and Z.K. Liu: ESPEI: extensible, self-optimizing phase equilibrium infrastructure for magnesium alloys, In: S.R. Agnew, N.R. Neelameggham, E.A. Nyberg, W.H. Sillekens (Eds.), Magnes. Technol. 2010, The Minerals, Metals and Materials Society, Warrendale, PA, 2010; pp. 617–622.

    Google Scholar 

  17. R. Otis and Z.-K. Liu: Pycalphad: CALPHAD-based computational thermodynamics in python. J. Open Res. Softw. 5, 1 (2017).

    Article  Google Scholar 

  18. A. Gelman, H.S. Stern, J.B. Carlin, D.B. Dunson, A. Vehtari and D.B. Rubin: Bayesian Data Analysis. Chapman and Hall/CRC, New York, NY, 2013.

    Book  Google Scholar 

  19. M. Hillert: The compound energy formalism. J. Alloys Compd. 320, 161–176 (2001).

    Article  CAS  Google Scholar 

  20. F.R. De Boer, W.C.M. Mattens, R. Boom, A.R. Miedema and A.K. Niessen: Cohesion in Metals, Philips Research Laboratories, Eindhoven, Netherlands, 1988.

    Google Scholar 

  21. G. Hautier, C.C. Fischer, A. Jain, T. Mueller and G. Ceder: Finding natures missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 3762–3767 (2010).

    Article  CAS  Google Scholar 

  22. Z.K. Liu: First-Principles calculations and CALPHAD modeling of thermodynamics. Calphad 30, 517–534 (2009).

    CAS  Google Scholar 

  23. O. Redlich and A.T. Kister: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948).

    Article  Google Scholar 

  24. J.E. Cavanaugh: Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat. Probab. Lett. 33, 201–208 (1997).

    Article  Google Scholar 

  25. H. Akaike: Information Theory and an Extension of the Maximum Likelihood Principle, Springer, New York, 1998.

    Book  Google Scholar 

  26. J. Goodman and J. Weare: Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    Article  Google Scholar 

  27. D. Foreman-Mackey, D.W. Hogg, D. Lang and J. Goodman: Emcee: the MCMC hammer. Publ. Astron. Soc. Pacific. 125, 306–312 (2013).

    Article  Google Scholar 

  28. Thermo-Calc Software AB: Thermo-Calc Documentation Set (2019), Database Manager User Guide. http://www.thermocalc.com.

    Google Scholar 

  29. B. Bocklund: ESPEI Software Documentation, (2019). https://www.espei.org.

    Google Scholar 

  30. ECMA International: The JSON Data Interchange Syntax, 2017.

    Google Scholar 

  31. H. Lukas, S.G. Fries and B. Sundman, Computational Thermodynamics The Calphad Method. Cambridge University Press, New York, NY, 2007. doi: 10.1017/CBO9780511804137.

    Book  Google Scholar 

  32. N.P. Bailey, J. Schiøtz and K.W. Jacobsen: Simulation of Cu–Mg metallic glass: thermodynamics and structure. Phys. Rev. B: Condens. Matter Mater. Phys. 69, 1–11 (2004).

    Article  Google Scholar 

  33. T. Buhler, S.G. Fries, P.J. Spencer and H.L. Lukas: A thermodynamic assessment of the Al–Cu–Mg ternary system. J. Phase Equilibria. 19, 317–329 (1998).

    Article  CAS  Google Scholar 

  34. C.A. Coughanowr, I. Ansara, R. Luoma, M. Hamalainen and H.L. Lukas: Assessment of the Cu–Mg system. Z. Meterol. 82, 574–581 (1991).

    CAS  Google Scholar 

  35. Y. Zuo and Y.A. Chang: Thermodynamic calculation of the Mg-Cu phase diagram. Z. Meterol. 84, 662–667 (1993).

    CAS  Google Scholar 

  36. S. Zhou, Y. Wang, F.G. Shi, F. Sommer, L.-Q. Chen, Z.-K. Liu and R.E. Napolitano: Modeling of thermodynamic properties and phase equilibria for the Cu–Mg binary system. J. Phase Equilibria Diffus. 28, 158–166 (2007).

    Article  CAS  Google Scholar 

  37. Q. Gao, J. Wang, S. Shang, S. Liu, Y. Du and Z.-K. Liu: First-principles calculations of finite-temperature thermodynamic properties of binary solid solutions in the Al–Cu–Mg system. Calphad 47, 196–210 (2014).

    Article  CAS  Google Scholar 

  38. T. Preston-Werner: Semantic Versioning 2.0.0, (n.d.). https://semver.org/spec/v2.0.0.html.

  39. Y. Jiang, S. Zomorodpoosh, I. Roslyakova and L. Zhang: Thermodynamic re-assessment of binary Cr-Nb system down to 0 K. Calphad Comput. Coupling Phase Diagrams Thermochem. 62. 109–118 (2018).

    Article  CAS  Google Scholar 

  40. B. Wilthan, E.A. Pfeif, V. V. Diky, R.D. Chirico, U.R. Kattner and K. Kroenlein: Data resources for thermophysical properties of metals and alloys, part 1: structured data capture from the archival literature. Calphad Comput. Coupling Phase Diagrams Thermochem. 56, 126–138 (2017). doi: 10.1016/j.calphad.2016.12.004.

    Article  CAS  Google Scholar 

  41. E.A. Pfeif and K. Kroenlein: Perspective: data infrastructure for high throughput materials discovery. APL Mater. 4, 053203 (2016).

    Article  Google Scholar 

  42. H. Feufel and F. Sommer: Thermodynamic investigations of binary liquid and solid Cu–Mg and Mg-Ni alloys and ternary liquid Cu–Mg-Ni alloys. J. Alloys Compd. 224, 42–54 (1995).

    Article  CAS  Google Scholar 

  43. R. King and O. Kleppa: A thermochemical study of some selected laves phases. Acta Metall. 12, 87–97 (1964).

    Article  CAS  Google Scholar 

  44. G.I. Batalin, V.S. Sudavtsova and M.V. Mikhailovskaya: Thermodynamic properties of liquid alloys of the Cu–Mg systems. Izv. Vyss. Ucheb. Zaved., Tsvetn. Met. 2, 29–31 (1987).

    Google Scholar 

  45. D. Shin: Thermodynamic properties of solid solutions from special quasirandom structures and CALPHAD modeling: application to aluminum-copper-magnesium-silicon and hafnium-silicon-oxygen. The Pennsylvania State University, State College, PA, 2007.

    Google Scholar 

  46. Q.N. Gao, J. Wang, S.L. Shang, S.H. Liu, Y. Du and Z.K. Liu: First-principles calculations of finite-temperature thermodynamic properties of binary solid solutions in the Al–Cu–Mg system. Calphad 47, 196–210 (2014).

    Article  CAS  Google Scholar 

  47. N.H. Paulson, B.J. Bocklund, R.A. Otis, Z.-K. Liu and M. Stan: Quantified Uncertainty in Thermodynamic Modeling for Materials Design. Acta Mater. 174, 9–15 (2019). doi:10.1016/j.actamat.2019.05.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jiong Wang, ShunLi Shang, and Yi Wang for their help in testing ESPEI. B.B. was supported by a NSF National Research Trainee Fellowship grant DGE-1449785. This work was also supported by a NASA Space Technology Research Fellowship grant number 80NSSC18K1168 and used the NSF Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant number ACI-1548562. R.O. acknowledges financial support from NASA’s Science Mission Directorate and Space Technology Mission Directorate through the Game Changing Development program under Prime Contract #80NM0018D0004, and the Space Technology Office at the Jet Propulsion Laboratory, California Institute of Technology. The financial support from the Collaborative Research Center “Superalloys Single Crystal” (TR-103 project C6) of the German Research Foundation (DFG) and the Sino-German Cooperation Group is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon Bocklund.

ESPEI Documentation

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.59

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocklund, B., Otis, R., Egorov, A. et al. ESPEI for efficient thermodynamic database development, modification, and uncertainty quantification: application to Cu–Mg. MRS Communications 9, 618–627 (2019). https://doi.org/10.1557/mrc.2019.59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.59

Navigation