Skip to main content
Log in

Biomimetic non-uniform nanostructures reduce broadband reflectivity in transparent substrates

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The remarkable broadband and omnidirectional anti-reflectivity observed in the glasswing butterfly arises from the random array of nanopillars present on their wings. In the present study, analogous structures have been replicated on transparent substrates using a scalable, low-cost method that exploits surface dewetting of silver thin films on silica substrates to form an etch mask. Directional etching was applied with high selectivity between Ag and SiO2 using CHF3, allowing large aspect ratios to be achieved with 20 min etches. Single-sided nanostructuring of glass by this method improved the transmission of light by 2–8% for viewing angles of 25°, 45°, and 65°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. H.A. Macleod: Thin-Film Optical Filters, 4th ed. (Taylor & Francis, Boca Raton, FL, 2010).

    Book  Google Scholar 

  2. J. Cai and L. Qi: Recent advances in antireflective surfaces based on nanostructure arrays. Mater. Horiz. 2, 37 (2015).

    Article  CAS  Google Scholar 

  3. R.H. Siddique, G. Gomard, and H. Holscher: The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly. Nat. Commun. 6, 6909 (2015).

    Article  CAS  Google Scholar 

  4. E. Hecht: Optics, 4th ed. (Addison-Wesley, Boston, MA, 2001).

    Google Scholar 

  5. K.H. Guenther: Physical and chemical aspects in the application of thin films on optical elements. Appl. Opt. 23, 3612 (1984).

    Article  CAS  Google Scholar 

  6. H.K. Raut, V.A. Ganesh, A.S. Nair, and S. Ramakrishna: Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci. 4, 3779 (2011).

    Article  CAS  Google Scholar 

  7. B.E. Yoldas: Investigations of porous oxides as an antireflective coating for glass surfaces. Appl. Opt. 19, 1425 (1980).

    Article  CAS  Google Scholar 

  8. C.G. Bernhard, W.H. Miller, and A.R. Moller: The insect corneal nipple array. A biological, broad-band impedance transformer that acts as a antireflection coating. Acta Physiol. Scand. 63, Suppl 2431, 1–79 (1965).

    Google Scholar 

  9. P.B. Clapham and M.C. Hutley: Reduction of lens reflexion by the ‘Moth Eye’ principle. Nature 244, 281–282 (1973).

    Article  Google Scholar 

  10. A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto: Nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas. Zool. Sci. 13, 525 (1996).

    Article  Google Scholar 

  11. J. Morikawa, M. Ryu, G. Seniutunas, A. Balcytis, K. Maximova, X. Wang, M. Zamengo, E. Ivanova, and S. Juodkazis: Nanostructured antireflective and thermoisolative cicada wings. Langmuir 32, 4698 (2016).

    Article  CAS  Google Scholar 

  12. H.G. Craighead, R.E. Howard, J.E. Sweeney, and D.M. Tennant: Textured surfaces: optical storage and other applications. J. Vacuum Sci. Technol. 20, 316 (1982).

    Article  CAS  Google Scholar 

  13. R. Halir, P.J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J.H. Schmid, J. Lapointe, D. Xu, J.G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz: Waveguide sub-wavelength structures: a review of principles and applications. Laser Photonics Rev. 9, 25 (2015).

    Article  CAS  Google Scholar 

  14. R.H. Siddique, Y.J. Donie, G. Gomard, S. Yalamanchili, T. Merdzhanova, U. Lemmer, and H. Hölscher: Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers. Sci. Adv. 3, 1700232 (2017).

    Article  Google Scholar 

  15. Y. Huang, S. Chattopadhyay, Y. Jen, C. Peng, T. Liu, Y. Hsu, C. Pan, H. LO, C. Hsu, Y. Chang, C. Lee, K. Chen, and L. Chen: Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2, 770 (2007).

    Article  CAS  Google Scholar 

  16. L. Chan, E.A. DeCuir Jr., R. Fu, D.E. Morse, and M.J. Gordon: Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity. J. Optics 19, 11 (2017).

    Article  Google Scholar 

  17. Y. Huang, Y. Jen, L. Chen, K. Chen, and S. Chattopadhyay: Design for approaching cicada-wing reflectance in low- and high-index biomimetic nanostructures. ACS Nano 9, 301 (2015).

    Article  CAS  Google Scholar 

  18. Y.C. Chen, Z.S. Huang, and H. Yang: Cicada-wing-inspired self-cleaning antireflection coatings on polymer substrates. ACS Appl. Mater. Interfaces 7, 25495 (2015).

    Article  CAS  Google Scholar 

  19. G. Zhang, J. Zhang, G. Xie, Z. Liu, and H. Shao: Cicada wings: a stamp from nature for nanoimprint lithography. Small 2, 1440 (2006).

    Article  CAS  Google Scholar 

  20. G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu: The fabrication of subwavelength anti-reflective nanostructures using a bio-template. Nanotechnology 19, 095605 (2008).

    Article  Google Scholar 

  21. J. Sun, X. Wang, J. Wu, C. Jiang, J. Shen, M.A. Cooper, X. Zheng, Y. Liu, Z. Yang, and D. Wu: Biomimetic moth-eye nanofabrication: enhanced antireflection with superior self-cleaning characteristic. Sci. Rep. 8, 5438 (2018).

    Article  Google Scholar 

  22. V.R. Binetti, J.D. Schiffman, O.D. Leaffer, J.E. Spanier, and C.L. Schauer: The natural transparency and piezoelectric response of the Greta oto butterfly wing. Integr. Biol. (Camb.) 1, 324 (2009).

    Article  Google Scholar 

  23. C. Thompson: Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399 (2012).

    Article  CAS  Google Scholar 

  24. H.G. Craighead, R.E. Howard, J.E. Sweeney, and D.M. Tennant: Textured surfaces: optical storage and other applications. J. Vac. Sci. Technol. 20, 316 (1982).

    Article  CAS  Google Scholar 

  25. G.J. Jorgensen, S. Brunold, M. Koehl, P. Nostell, H. Oversloot, and A. Roos: Durability testing of antireflection coatings for solar applications, in SPIE Int. Symp. on Optical Science, Engineering, and Instrumentation, edited by C.M. Lampert and C. Granqvist (International Society for Optics and Photonics, 3789, Denver, CO, 1999), pp. 66–76.

    Google Scholar 

  26. L.A. Gil-Alana, G.C. Aye, and R. Gupta: Trends and cycles in historical gold and silver prices. J. Int. Money Finance 58, 98 (2015).

    Article  Google Scholar 

  27. J. Madocks and W. Seaman: Anti-reflective coatings by plasma enhanced chemical vapor deposition for large area applications, in Society of Vacuum Coaters 54th Annual Technical Conference Proceedings, edited by D. McClure (Society of Vacuum Coaters, Chicago, IL, 2011), pp. 229–233.

    Google Scholar 

Download references

Acknowledgments

The early stage of this work was supported by the National Research Foundation of Singapore through the Singapore-MIT Alliance for Research and Technology’s Low Energy Electronic System interdisciplinary research group. The opportunity for this research was provided by Materials Solutions for Sustainability (MADMEC) at the Massachusetts Institute of Technology. MADMEC is supported by the MIT Department of Materials Science and Engineering, Dow Chemical, and Saint-Gobain. We would like to thank Dr. Michael Tarkanian and Professor Carl Thompson for their feedback on experimental design. We are grateful to Dr. Michael Christiansen and Dr. Andrei Sourakov for reviewing the manuscript and providing useful suggestions.

Figure 1b reprinted with permission from [Springer Nature Customer Service Centre GmbH]: [Springer Nature] [NATURE COMMUNICATIONS] [R. H. Siddique, G. Gomard, H. Holscher, Nat. Commun. 6, 6909 (2015). (The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly, Radwanul Hasan Siddique, Guillaume Gomard, Hendrik Holscher), [COPYRIGHT 2015].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra A. Sourakov.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.57

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourakov, A.A., Al-Obeidi, A. Biomimetic non-uniform nanostructures reduce broadband reflectivity in transparent substrates. MRS Communications 9, 637–643 (2019). https://doi.org/10.1557/mrc.2019.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.57

Navigation