Skip to main content
Log in

Device processing and junction formation needs for ultra-high power Ga2O3 electronics

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A review is given of the future device processing needs for Ga203 power electronics. The two main devices employed in power converters and wireless charging systems will be vertical rectifiers and metal oxide semiconductor field effect transistors (MOSFETs). The rectifiers involve thick epitaxial layers on conducting substrates and require stable Schottky contacts, edge termination methods to reduce electric field crowding, dry etch patterning in the case of trench structures, and low resistance Ohmic contacts in which ion implantation or low bandgap inter-facial oxides are used to minimize the specific contact resistance. The MOSFETs also require spatially localized doping enhancement for low source/drain contact resistance, stable gate insulators with acceptable band offsets relative to the Ga203 to ensure adequate carrier confinement, and enhancement mode capability. Attempts are being made to mitigate the absence of p-type doping capability for Ga203 by developing p-type oxide heterojunctions with n-type Ga203. Success in this area would lead to minority carrier devices with better on-state performance and a much-improved range of functionality, such as p-i-n diodes, Insulated Gate Bipolar Transistors, and thyristors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Z. Galazka: β-Ga203 for wide-bandgap electronics and optoelectronics. Semicond. Sci. Technol. 33, 113001 (2018). https://doi.org/10.1088/1361-6641/aadf78.

    Article  CAS  Google Scholar 

  2. B. Bayraktaroglu: Assesment of Gallium Oxide Technology, Air Force Research Lab, Devices for Sensing Branch, Aerospace Components and Subsystems Division, Report AFRL-RY-WP-TR-2017-0167 (2017).

    Google Scholar 

  3. M. Higashiwaki and G.H. Jessen: Guest editorial: the dawn of gallium oxide microelectronics. Appl. Phys. Lett. 112, 060401 (2018).

    Article  CAS  Google Scholar 

  4. M.J. Tadjer, N.A. Mahadik, V. Wheeler, E.R. Glaser, L. Ruppalt, and A.D. Koehler: Editors’ choice communication-A (001) β-Ga203 MOSFET with +2.9 V threshold voltage and Hf02 gate dielectric. ECS J. Solid State Sci. Technol. 5, P468–P470 (2016).

    Article  CAS  Google Scholar 

  5. M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki: Field-plated Ga203 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett. 37, 212–215 (2016).

    Article  CAS  Google Scholar 

  6. S.J. Pearton, J.C. Yang, P.H. Carey, F Ren, J. Kim, M.J. Tadjer, and M.A. Mastro: A review of Ga203 materials, processing, and devices. Appl. Phys. Rev. 5, 011301 (2018).

    Article  CAS  Google Scholar 

  7. X. Cheng: Overview of recent progress of semiconductor power devices based on wide bandgap materials. IOP Conf. Ser.: Mater. Sci. Eng. 439, 022033 (2018). https://doi.org/10.1088/1757-899X/439/2/022033.

    Article  Google Scholar 

  8. R. Singh and S. Sundaresan: 1200 V SiC Schottky rectifiers optimized for ≽250 °C operation with low junction capacitance Applied Power Electronics Conference and Exposition, pp. 226–228 (2013).

    Google Scholar 

  9. Y. Eum, K. Oyama, and N. Otake: Highly reliable GaN MOS-HFET with high short-circuit capability International Symposium on Power Semiconductor Devices and Ic’s, pp. 195–198 (2017).

    Google Scholar 

  10. J.B. Varley, A. Janotti, C. Franchini, and C.G. Van de Walle: Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys. Rev. B 85, 081109(R) (2012).

    Article  CAS  Google Scholar 

  11. A.T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J.S. Speck, K.T. Stevens, J.D. Blevins, D.B. Thomson, N. Moser, K.D. Chabak, and G.H. Jessen: Donors and deep acceptors in β-Ga203. Appl. Phys. Lett. 113, 062101 (2018); https://doi.org/10.1063/1.5034474.

    Article  CAS  Google Scholar 

  12. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi: Si-ion implantation doping in beta-Ga203 and its application to fabrication of low-resistance ohmic contacts. Appl. Phys. Express 6, 086502 (2013).

    Article  CAS  Google Scholar 

  13. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi: Gallium oxide (Ga203) metal-semiconductor field-effect transistors on single-crystal β-Ga203 (010) substrates. Appl. Phys. Lett. 100, 013504 (2012).

    Article  CAS  Google Scholar 

  14. T. Watahiki, Y. Yuda, A. Furukawa, M. Yamamuka, Y. Takiguchi, and S. Miyajima: Heterojunction p-Cu20/n-Ga203 diode with high breakdown voltage. Appl. Phys. Lett. 111, 222104 (2017).

    Article  CAS  Google Scholar 

  15. M.A. Tadjer, N.A. Mahadik, J.A. Freitas, E.A. Glaser, A.D. Koehler, L.E. Luna, B.N. Feigelson, K.D. Hobart, F.J. Kub, and A. Kuramata: Ga203 Schottky barrier and heterojunction diodes for power electronics applica tions, Proc. SPIE 10532, Gallium Nitride Materials and Devices XIII, 1053212 (23 February 2018); doi: 10.1117/12.2292211.

    Google Scholar 

  16. Y. Kokubun, S. Kubo, and S. Nakagomi: All-oxide p-n heterojunction diodes comprising p-type NiO and n-type β- Ga203. Appl. Phys. Expr. 9, 091101 (2016).

    Article  CAS  Google Scholar 

  17. S. Nakagomi, K. Hiratsuka, Y. Kakuda, and Y. Kokubun: Beta-gallium oxide/SiC heterojunction diodes with high rectification ratios. ECS J. Solid State Sci. Technol. 6, Q3030–Q3034 (2017).

    Article  CAS  Google Scholar 

  18. J. Lee, E. Flitsiyan, L. Chernyak, J. Yang, F. Ren, S.J. Pearton, B. Meyler, and Y.J. Salzman: Effect of 1.5 MeV electron irradiation on β-Ga203 carrier lifetime and diffusion length. Appl. Phys. Lett. 112, 082104 (2018); https://doi.org/10.1063/1.5011971.

    Article  CAS  Google Scholar 

  19. M. Higashiwaki, K. Sasaki, M.H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi: Depletion-mode Ga203 MOSFETs on β-Ga203 (010) substrates with Si-ion-implanted channel and contacts, Electron Devices Meeting (IEDM), 2013 IEEE International, pages 28–32. IEEE, 2013.

    Google Scholar 

  20. E. Chikoidze, A. Fellous, A. Perez-Tomas, G. Sauthier, T. Tchelidze, C. Ton-That, T. Huynh, M. Phillips, S. Russell, M. Jennings, B. Berini, F. Jomard, and Y. Dumont: P-type β-gallium oxide: a new perspective for power and optoelectronic devices. Mater. Today Physics 3, 118–126 (2017). https://doi.org/10.1016/j.mtphys.2017.10.002.

    Article  Google Scholar 

  21. A. Kyrtsos, M. Matsubara, and E. Bellotti: On the feasibility of p-type Ga203. Appl. Phys. Lett. 112, 032108 (2018); https://doi.org/10.1063/1.5009423.

    Article  CAS  Google Scholar 

  22. M.A. Tadjer, T. Anderson, K.D. Hobart, T.I. Feygelson, J.D. Caldwell, C.R. Eddy, F.J. Kub, J.E. Butler, B. Pate, and J. Melngailis: Reduced self-heating in AlGaN/GaN HEMTs using nanocrystalline diamond heat-spreading films. IEEE Electron Dev. Lett. 33, 23–25 (2012).

    Article  CAS  Google Scholar 

  23. T.J. Anderson, A.D. Koehler, K.D. Hobart, M.J. Tadjer, T.I. Feygelson, J.K. Hite, B. Pate, F.J. Kub, and C.R. Eddy: Nanocrystalline diamond-gated AIGaN/GaN HEMT. IEEE Electron Dev. Lett. 34, 1382–1384 (2013).

    Article  CAS  Google Scholar 

  24. D. Meyer, T. Feygelson, T. Anderson, J. Roussos, M. Tadjer, B. Downey, D. Katzer, B. Pate, M. Ancona, A. Koehler, K.D. Hobart, and C. Eddy: Large-signal RF performance of nanocrystalline diamond coated AIGaN/GaN high electron mobility transistors. IEEE Electron Dev. Lett. 35, 1013–1015 (2014).

    Article  CAS  Google Scholar 

  25. K. Chabak, N. Moser, A.J. Green, D.E. Walker, S.E. Tetlak, E. Heller, A. Crespo, R. Fitch, J. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li, and G. Jessen: Enhancement-mode Ga203 wrap-gate fin field-effect transistors on native (100) β-Ga203 substrate with high breakdown voltage. Appl. Phys. Lett. 109, 213501 (2016). https://doi.org/10.1063/1.4967931.

    Article  CAS  Google Scholar 

  26. E. Ahmadi, O.S. Koksaldi, X. Zheng, T. Mates, Y. Oshima, U. Mishra, and J. Speck: Demonstration of β-(AlxGa1_x)203/β-Ga203 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy. Appl. Phys. Expr. 10, 071101 (2017). https://doi.org/10.7567/APEX.10.071101.

    Article  Google Scholar 

  27. S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A.R. Arehart, J. Hwang, S. Lodha, and S. Rajan: Modulation-doped β-(AI0.2Ga0.8)203/Ga203 field-effect transistor. Appl. Phys. Lett. 111, 023502 (2017).

    Article  CAS  Google Scholar 

  28. Y. Zhang, C. Joishi, X. Xia, M. Brenner, S. Lodha, and S. Rajan: Demonstration of β-(AlxGa1-x)203/Ga203 double heterostructure field effect transistors. Appl. Phys. Lett. 112, 233503 (2018). https://doi.org/10.1063/1.5037095.

    Article  CAS  Google Scholar 

  29. Y. Zhang, A. Neal, S. Xia, C. Joishi, J.M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J.P. Heremans, and RajanS: Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1_x)203/Ga203 heterostructures. Appl. Phys. Lett. 112, 173502 (2018).

    Article  CAS  Google Scholar 

  30. R. Wakabayashi, M. Hattori, K. Yoshimatsu, K. Horiba, H Kumigashira, and A. Ohtomo: Band alignment at β-(AlxGa1-x)203/β-Ga203 (100) interface fabricated by pulsed-laser deposition. Appl. Phys. Lett. 112, 232103 (2018).

    Article  CAS  Google Scholar 

  31. A. Takatsuka, K. Sasaki, D. Wakimoto, Q. Thieu, R. Koishikawa, J. Arima, J. Hirabayashi, D. Inokuchi, Y. Fukumitsu, A. Kuramata, and S. Yamakoshi: Fast Recovery Performance of β-Ga203 Trench MOS Schottky Barrier Diodes, 76th Dev. Res. Conf. Proc, 2018. DOI: 10.1109/DRC.2018.8442267.

    Google Scholar 

  32. J.C. Yang, F. Ren, Y.T. Chen, Y.T. Liao, C.W. Chang, J. Lin, M. Tadjer, S.J. Pearton, and A. Kuramata: Dynamic switching characteristics of 1 afor-ward current β-Ga203 rectifiers. IEEE J. Electron Devices Society (2019). DOI: 10.1109/JEDS.2018.2877495.

    Google Scholar 

  33. J.C. Zolper: Ion implantation in group Ill-nitride semiconductors: a tool for doping and defect studies. J. Crystal Growth 178, 157–167 (1997). https://doi.org/10.1016/S0022-0248(97)00076-6.

    Article  CAS  Google Scholar 

  34. M.H. Wong, C.H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Masataka, and M. Higashiwaki: Acceptor doping of β-Ga203 by Mg and N ion implantations. Appl. Phys. Lett. 113, 102103 (2018). https://doi.org/10.1063/1.5050040.

    Article  CAS  Google Scholar 

  35. P. Carey, J. Yang, F. Ren, D.C. Hays, S.J. Pearton, S. Jang, A. Kuramata, and I.I. Kravchenko: Improvement of ohmic contacts on Ga203 through use of ITO-interlayers. J. Vac. Sci. Technol. B. 35, 061201 (2017).

    Article  CAS  Google Scholar 

  36. P. Carey, J.C. Yang, F. Ren, D.C. Hays, S.J. Pearton, S. Jang, A. Kuramata, and I. Kravchenko: Ohmic contacts on N-type Ga203 using AZO/Ti/Au. AlP Adv 7, 095313 (2017).

    Google Scholar 

  37. K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, and Y. Nakamura: Growth of β-Ga203 single crystals using vertical Bridgman method in ambient air. J. Cryst. Growth 447, 36–41 (2016).

    Article  CAS  Google Scholar 

  38. R. Togashi, K. Nomura, C. Eguchi, T. Fukizawa, K. Goto, Q.T. Thieu, H. Murakami, Y. Kumagai, A. Kuramata, and S. Yamakoshi: Thermal stability of β-Ga203 in mixed flows of H2 and N2. Japan. J. Appl. Phys. 54, 041102 (2015). http://dx.doi.org/10.7567/JJAP.54.041102.

    Article  CAS  Google Scholar 

  39. W. Mu, Z. Jia, Y. Yin, Q. Hu, Y. Li, B. Wu, J. Zhang, and X. Tao: High quality crystal growth and anisotropic physical characterization of β-Ga203 single crystals grown by EFG method. J. Alloys Compounds 714, 453 (2017).

    Article  CAS  Google Scholar 

  40. V.I. Nikolaev, V. Maslov, S. Stepanov, A. Pechnikov, V. Krymov, I. Nikitina, L. Guzilova, V. Bougrov, and A. Romanov: Growth and characterization of β-Ga203 crystals. J. Cryst. Growth 457, 132–136 (2017).

    Article  CAS  Google Scholar 

  41. Y. Yao, R.F. Davis, and L.M. Porter: Investigation of different metals as ohmic contacts to β-Ga203: comparison and analysis of electrical behavior, morphology and other physical properties. J. Electron. Mater. 46, 2053 (2017).

    Article  CAS  Google Scholar 

  42. Y. Yao, R. Gangireddy, J. Kim, K.K. Das, R.F. Davis, and L.M. Porter: Electrical behavior of β-Ga203 Schottky diodes with different Schottky metals. J. Vacuum Sci. Technol. B 35, 03D113 (2017).

    Article  CAS  Google Scholar 

  43. M. Tadjer: Ohmic Contacts to Ga203. In Gallium Oxide Technology Devices and Applications, edited by S. Pearton, M. Mastro and F. Ren (Elsevier, Oxford, 2018), pp. 413–434.

    Google Scholar 

  44. T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, and K. Yoshimatsu: Formation of indium-tin oxide ohmic contacts for β-Ga203. Japan J. Appl. Phys. 55, 1202B7 (2016).

    Article  CAS  Google Scholar 

  45. D. Splith, S. Muller, F. Schmidt, H. Von Wenckstern, J.J. van Rensburg, W.E. Meyer, and M. Grundmann: Determination of the mean and the homogeneous barrier height of Cu Schottky contacts on heteroepitaxial β-Ga203 thin films grown by pulsed laser deposition. Physica statussolidi (a), 211, 40–47 (2014).

    CAS  Google Scholar 

  46. M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi: Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga203 (001) Schottky barrier diodes fabricated on n-Ga203 drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett., 108, 133503 (2016).

    Article  CAS  Google Scholar 

  47. S. Ahn, F. Ren, L. Yuan, S.J. Pearton, and A. Kuramata: Temperature-dependent characteristics of Ni/Au and Pt/Au Schottky diodes on β-Ga203. ECS J. Solid State Sci. Technol. 6, P68–P72 (2017).

    Article  CAS  Google Scholar 

  48. A. Armstrong, M.H. Crawford, A. Jayawardena, A. Ahyi, and S. Dhar: Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes. J. Appl. Phys., 119, 103102 (2016). https://doi.org/10.1063/1.4943261.

    Article  CAS  Google Scholar 

  49. S. Oh, G. Yang, and J. Kim: Electrical characteristics of vertical Ni/β-Ga203 Schottky barrier diodes at high temperatures. ECS J. Solid State Sci. Technol. 6, Q3022–Q3025 (2017).

    Article  CAS  Google Scholar 

  50. E. Farzana, Z. Zhang, P. Paul, A.R. Arehart, and S.A. Ringel: Influence of metal choice on (010) β-Ga203 Schottky barrier properties. Appl. Phys. Lett. 110, 202102 (2017). https://doi.org/10.1063/1.4983610.

    Article  CAS  Google Scholar 

  51. W. Schottky: Deviations from Ohm’s law in semiconductors. Physik. Zeitschr 41, 570–573 (1940).

    Google Scholar 

  52. W. Mönch: Valence-band offsets of lnGaZn04, LaAl03 and SrTi03 hetero-structures explained by interface-induced gap states. J. Mater. Sci.: Mater. Electron. 29, 19607–19613 (2018). https://doi.org/10.1007/s10854-018-0161-3.

    Google Scholar 

  53. R.L. Anderson: Experiments on Ge-GaAs heterojunctions. Solid-State Electron. 5, 341–351 (1962).

    Article  CAS  Google Scholar 

  54. N.F. Mott: Note on the contact between a metal and an insulator or semiconductor. Proc. Cambridge Philos. Soc. 34, 568–572 (1938).

    Article  CAS  Google Scholar 

  55. C. Fares, F. Ren, E. Lambers, D.C. Hays, B.P. Gila, and S.J. Pearton: Band alignment of atomic layer deposited Si02 on (010) (Al014Gao86)203. J. Vac. Sci. Technol. B 36, 061207 (2018).

    Article  CAS  Google Scholar 

  56. P.H. Carey, F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, and A. Kuramata: Conduction and valence band offsets of LaAl203 with (-201) β-Ga203. J. Vac. Sci. Technol. B. 35, 041201 (2017), https://doi.org/10.1116/1.4984097.

    Article  CAS  Google Scholar 

  57. P. Carey, F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, and A. Kuramata: Band alignment of atomic layer deposited Si02 and HfSi04 with (-201) β-Ga203. Jpn. J. Appl. Phys. 56, 071101 (2017). https://doi.org/10.7567/JJAP.56.071101.

    Article  Google Scholar 

  58. P. Carey, F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, and A. Kuramata: Band alignment of Al203 With (-201) β-Ga203. Vacuum 142, 52 (2017), https://doi.org/10.1016/j.vacuum.2017.05.006.

    Article  CAS  Google Scholar 

  59. D.C. Hays, B.P. Gila, S.J. Pearton, and F. Ren: Energy band offsets of dielectrics on lnGaZn04. Appl. Phys. Rev. 4, 021301 (2017), https://doi.org/10.1063/1.4980153.

    Article  CAS  Google Scholar 

  60. C. Fares, F. Ren, E. Lambers, D.C. Hayes, B.P. Gila, and S.J. Pearton: Band offsets for atomic layer deposited HfSi04 on (Al0.14Ga0.86)203. ECS J. Solid State Sci. Technol. 7, P519 (2018).

    Article  CAS  Google Scholar 

  61. K. Ghosh and U. Singisetti: Calculation of electron impact ionization coefficient in β-Ga203, 72nd Device Research Conference (2014), pp. 71–72.

    Book  Google Scholar 

  62. J.C. Yang, S. Ahn, F. Ren, S.J. Pearton, S. Jang, J. Kim, and A. Kuramata: High reverse breakdown voltage Schottky rectifiers without edge termination on Ga20. Appl. Phys. Lett. 110, 192101 (2017).

    Article  CAS  Google Scholar 

  63. J.C. Yang, F. Ren, M. Tadjer, S.J. Pearton, and A. Kuramata: 2300 V reverse breakdown voltage Ga203 Schottky rectifiers. ECS J. Solid State Sci. Technol. 7, P92–P97 (2017).

    Article  CAS  Google Scholar 

  64. J. Yang, S. Ahn, F. Ren, S.J. Pearton, and A. Kuramata: High breakdown voltage (-201) β-Ga203 Schottky rectifiers. IEEE Electron Dev. Lett. 38, 906–909 (2017).

    Article  CAS  Google Scholar 

  65. L. Cao, W. Wang, G. Harden, H. Ye, R. Stillwell, A.J. Hoffman, and P. Fay: Experimental characterization of impact ionization coefficients for electrons and holes in GaN grown on bulk GaN substrates. Appl. Phys. Lett. 112, 262103 (2018).

    Article  CAS  Google Scholar 

  66. K.G. McKay and K.B. McAfee: Electron multiplication in Si and Ge. Phys. Rev. 91, 1079 (1953).

    Article  CAS  Google Scholar 

  67. K.G. McKay: Avalanche breakdown in Si. Phys. Rev. 94, 877 (1954).

    Article  CAS  Google Scholar 

  68. A.G. Chynoweth and K.G. McKay: Threshold energy for electron-hole pair production by electrons in Si. Phys. Rev. 108, 29 (1957).

    Article  CAS  Google Scholar 

  69. A.G. Chynoweth: Ionization rates for electrons and holes in Si. Phys. Rev. 109, 1537 (1958).

    Article  CAS  Google Scholar 

  70. A.G. Chynoweth and G.L. Pearson: Effect of dislocations on breakdown in Si p-n junctions. J. Appl. Phys. 29, 1103 (1958).

    Article  CAS  Google Scholar 

  71. M. Grundmann, F. Klüpfel, R. Karsthof, P. Schlupp, F. Schein, D. Splith, C. Yang, S. Bitter, and H. von Wenckstern: Oxide bipolar electronics: materials, devices and circuits. J. Phys. D: Appl. Phys. 49, 213001 (2016).

    Article  CAS  Google Scholar 

  72. S. Gao, Y. Wu, R. Kang, and H. Huang: Nanogrinding induced surface and deformation mechanism of single crystal β-Ga203. Mat. Sci. Semicon. Proc. 79, 165–170 (2018).

    Article  CAS  Google Scholar 

  73. Y.Q. Wu, S. Gao, and H. Huang: The deformation pattern of single crystal β-Ga203 under nanoindentation. Materials Sci. Semicon. Proc. 71, 321–325 (2017).

    Article  CAS  Google Scholar 

  74. T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, and M. Kasu: Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga203 substrates with crystal defects. Jpn. J. Appl. Phys. 56, 086501 (2017).

    Article  Google Scholar 

  75. K. Nakai, T. Nagai, K. Noami, and T. Futagi: Characterization of defects in β-Ga20 single crystals. Jpn. J. Appl. Phys. 54, 015201 (2015).

    Article  CAS  Google Scholar 

  76. M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda: Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on β-Ga203. Jpn. J. Appl. Phys. 56, 091101 (2017) https://doi.org/10.7567/JJAP.56.091101.

    Article  Google Scholar 

  77. J.B. Varley, H. Peelaers, A. Janotti, and C.G. Van de Walle: Hydrogenated cation vacancies in semiconducting oxides. J. Phys: Condens. Matter 23, 334212 (2011).

    CAS  Google Scholar 

  78. S. Lany: Defect phase diagram for doping of Ga203. APL Mater. 6, 046103 (2018).

    Article  CAS  Google Scholar 

  79. S. Ohira, and N. Arai: Wet chemical etching behavior of β-Ga203 single crystal. Phys. Status Solidi. C 9, 3116–3118 (2008).

    Article  CAS  Google Scholar 

  80. Z. Hu, K. Nomoto, W. Li, Z. Zhang, N. Tanen, Q.T. Thieu, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, and H.G. Xing: Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga203 vertical transistors. Appl. Phys. Lett. 113, 122103 (2018).

    Article  CAS  Google Scholar 

  81. M.J. Tadjer: Cheap ultra-wide bandgap power electronics? gallium oxide may hold the answer. ECS Interlace, 11 49–52 (2018). https://doi.org/10.1149/2.F05184if.

    Google Scholar 

Download references

Acknowledgments

The work at UF is partially supported by Department of the Defense, Defense Threat Reduction Agency, HDTRA1-17-1-0011 (Jacob Calkins, monitor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Pearton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Yang, J.C., Fares, C. et al. Device processing and junction formation needs for ultra-high power Ga2O3 electronics. MRS Communications 9, 77–87 (2019). https://doi.org/10.1557/mrc.2019.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.4

Navigation