Skip to main content
Log in

Identifying hidden high-dimensional structure/property relationships using self-organizing maps

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Unlike other data intensive domains, understanding distributions, trends, correlations, and relationships in materials data sets typically involves navigating high-dimensional spaces with only a limited number of observations. Under these conditions extracting structure/property relationships is not straightforward and considerable attention must be given to the reduction of feature space before predictions can be made. Here we have used Kohonen networks (self-organizing maps) to identify hidden structure/property relationships in computational sets of twinned and single-crystal diamond nanoparticles based on structural similarity in multiple dimensions, and confirmed the importance of a limited number of surface chemical features using regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. A. Agrawal and A. Choudhary: Perspective: materials informatics and big data: realization of the fourth paradigm of science in materials science. APL Mater. 4, 053208 (2016).

    Article  Google Scholar 

  2. A. Jain, G. Hautier, S.P. Ong, and K. Persson: New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J. Mater. Res. 31, 977 (2016).

    Article  CAS  Google Scholar 

  3. B. Sun, M. Fernandez, and A.S. Barnard: Statistics, damned statistics and nanoscience–using data science to meet the challenge of nanomaterial complexity. Nano Horiz. 1, 89 (2016).

    Article  CAS  Google Scholar 

  4. Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, and Kim C: Machine learning in materials informatics: recent applications and prospects. Comput. Mater. 3, 54 (2017).

    Article  Google Scholar 

  5. R. Ramakrishnan and A. von Lilienfeld: Machine learning, quantum chemistry, and chemical space. Rev. Comput. Chem. 30, 225 (2017).

    CAS  Google Scholar 

  6. B. Sun, M. Fernandez and A.S. Barnard: Machine learning for silver nano-particle electron transfer property prediction. J. Chem. Info. Mod. 57, 2413 (2017).

    Article  CAS  Google Scholar 

  7. L. Ward and C. Wolverton: Atomistic calculations and materials informatics: a review. Curr. Opin. Solid State Mater. Sci.,> 21, 167 (2017).

    Article  CAS  Google Scholar 

  8. E. Swann, B. Sun, D.M. Cleland, and A.S. Barnard: Representing molecular and materials data for unsupervised machine learning. Molec. Simulat. 44, 905 (2018).

    Article  CAS  Google Scholar 

  9. T. Kohonen: The self-organizing map. Neurocomputing 21, 1 (1998).

    Article  Google Scholar 

  10. C. Bishop: Neural Networks for Pattern Recognition (Oxford University Press, USA, 1995).

    Google Scholar 

  11. J. Gasteiger, X. X. Li, C. Rudolph, J. Sadowski, and J. Zupan: Representation of molecular electrostatic potentials by topological feature maps. J. Am. Chem. Soc. 116, 46084 (1994).

    Article  Google Scholar 

  12. B. Sun and A.S. Barnard: Texture based image classification for nanopar-ticle surface characterisation and machine learning. J. Phys.: Mater. 1, 016001 (2018).

    Google Scholar 

  13. P. Wittek, S.C. Gao, I.S. Lim, and L. Zhao: An efficient parallel library for self-organizing maps. J. Stat. Software,> 78, 1 (2017).

    Article  Google Scholar 

  14. A. Barnard: Nanodiamond Data Set, v1. CSIRO Data Collection (2016) doi: 10.4225/08/571F076D050B1.

    Google Scholar 

  15. A. Barnard: Twinned Nanodiamond Data Set, v2. CSIRO Data Collection (2018) doi: 10.25919/5be375f444e69.

    Google Scholar 

  16. B. Sun and A.S. Barnard: Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers. Nanoscale 8, 14264 (2016).

    Article  CAS  Google Scholar 

  17. S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi: Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635 (2006).

    Article  CAS  Google Scholar 

  18. L. Ginés, S. Mandal, A. Ahmed, C.-L. Cheng, M. Sow, and O.A. Williams: Positive zeta potential of nanodiamonds. Nanoscale 9, 12549 (2017).

    Article  Google Scholar 

  19. T. K. Ho: Random Decision Forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, pp. 278 (1995).

    Google Scholar 

  20. O.A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, and C.E. Nebel: Size-Dependent reactivity of diamond nanoparticles. ACS Nano 4, 4824 (2010).

    Article  CAS  Google Scholar 

  21. A. Nagl, S. R. Hemelaar, and R. Schirhagl: Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—a review. Anal Bioanal. Chem. 407, 7521 (2015).

    Article  CAS  Google Scholar 

  22. K. Turcheniuk and V. Mochalin: Biomedical applications of nanodiamond (Review). Nanotechnology 28, 252001 (2017).

    Article  CAS  Google Scholar 

  23. A.S. Barnard: Predicting the impact of structural diversity on the performance of nanodiamond drug carriers. Nanoscale 10, 8893 (2018).

    Article  CAS  Google Scholar 

  24. S. Stehlik, L. Ondic, A.M. Berhane, I. Aharonovich, H.A. Girard, J.-C. Arnault, and B. Rezek: Photoluminescence of nanodiamonds influenced by charge transfer from silicon and metal substrates. Diamond Relat. Mater. 63, 91 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda S. Barnard.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.36

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnard, A.S., Motevalli, B. & Sun, B. Identifying hidden high-dimensional structure/property relationships using self-organizing maps. MRS Communications 9, 730–736 (2019). https://doi.org/10.1557/mrc.2019.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.36

Navigation