Skip to main content
Log in

Deciphering charge-storage mechanisms in 3D MnOx@carbon electrode nanoarchitectures for rechargeable zinc-ion cells

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We previously demonstrated that electrode architectures comprising nanoscale birnessite-like MnOx affixed to three-dimensional carbon nanofoam (CNF) scaffolds offer performance advantages when used as cathodes in rechargeable zinc-ion cells. To discern chemical and physical changes at the Mn0x@CNF electrode upon deep charge/discharge in aqueous Zn2+-containing electrolytes, we deploy electroanalytical methods and ex situ characterization by microscopy, elemental analysis, x-ray photoelectron spectroscopy, x-ray diffraction, and x-ray pair distribution function analyses. Our findings verify that redox processes at the MnOx are accompanied by reversible precipitation/dissolution of crystalline zinc hydroxide sulfate (Zn4(0H)6(S04xH20), mediated by the more uniformly reactive electrode structure inherent to the CNF scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. C. Xu, B. Li, H. Du, and F. Kang: Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012).

    Article  CAS  Google Scholar 

  2. R.K. Guduru and J.C. Icaza: A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 6, 1–19 (2016).

    Article  Google Scholar 

  3. M. Song, H. Tan, D. Chao, and H.J. Fan: Recent advances in Zn-ion batteries. Adv. Fund. Mater. 28, 1802564 (2018).

    Article  Google Scholar 

  4. D. Kundu, B.D. Adams, V. Duffort, S. Hosseini Vajargah, and L.F. Nazar: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).

    Article  CAS  Google Scholar 

  5. V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D. Yunianto Putro, J. Jo, S. Kim, V. Mathew, Y.-K. Sun, and J. Kim: Na2V6016·3H20 barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18, 2402–2410 (2018).

    Article  CAS  Google Scholar 

  6. D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast, and L.F. Nazar: Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881–892 (2018).

    Article  CAS  Google Scholar 

  7. C. Wei, C. Xu, B. Li, H. Du, and F. Kang: Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J. Phys. Chem. Solids 73, 1487–1491 (2012).

    Article  CAS  Google Scholar 

  8. B. Lee, C.S. Yoon, H.R. Lee, K.Y. Chung, B.W. Cho, and S.H. Oh: Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014).

    Article  CAS  Google Scholar 

  9. M.H. Alfaruqi, J. Gim, S. Kim, J. Song, D.T. Pham, J. Jo, Z. Xiu, V. Mathew, and J. Kim: A layered δ-Mn02 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 60, 121–125 (2015).

    Article  CAS  Google Scholar 

  10. M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, and J. Kim: Electrochemically induced structural transformation in a ψ-Mn02 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015).

    Article  CAS  Google Scholar 

  11. B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho, and S.H. Oh: Elucidating the intercalation mechanism of zinc ions into α-Mn02 for rechargeable zinc batteries. Chem. Commun. 51, 9265–9268 (2015).

    Article  CAS  Google Scholar 

  12. M.H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew, and J. Kim: Enhanced reversible divalent zinc storage in a structurally stable α-Mn02 nanorod electrode. J. Power Sources 288, 320–327 (2015).

    Article  CAS  Google Scholar 

  13. H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K.T. Mueller, and J. Liu: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    Article  CAS  Google Scholar 

  14. B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim, K.Y. Chung, B.W. Cho, and S.H. Oh: Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. ChemSusChem. 9, 2948–2956 (2016).

    Article  CAS  Google Scholar 

  15. W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu, and C. Wang: Zn/Mn02 battery chemistry with H+ and Zn2+ coin-sertion. J. Am. Chem. Soc. 139, 9775–9778 (2017).

    Article  CAS  Google Scholar 

  16. J.S. Ko, M.B. Sassin, J.F. Parker, D.R. Rolison, and J.W. Long: Combining battery-like and pseudocapacitive charge storage in 3D MnOx@carbon electrode architectures for zinc-ion cells. Sustainable Energy Fuels 2, 626–636 (2018).

    Article  CAS  Google Scholar 

  17. J.C. Lytle, J.M. Wallace, M.B. Sassin, A.J. Barrow, J.W. Long, J.L. Dysart, C.H. Renninger, M.P. Saunders, N.L. Brandell, and D.R. Rolison: The right kind of interior for multifunctional electrode architectures: carbon nano-foam papers with aperiodic submicrometre pore networks interconnected in 3D. Energy Environ. Sci. 4, 1913–1925 (2011).

    Article  CAS  Google Scholar 

  18. M.B. Sassin, C.P. Hoag, B.T. Willis, N.W. Kucko, D.R. Rolison, and J.W. Long: Designing high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity. Nanoscale 5, 1649–1657 (2013).

    Article  CAS  Google Scholar 

  19. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, and J.W. Long: Incorporation of homogeneous, nanoscale Mn02 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7, 281–286 (2007).

    Article  CAS  Google Scholar 

  20. A.E. Fischer, M.P. Saunders, K.A. Pettigrew, D.R. Rolison, and J.W. Long: Electroless deposition of nanoscale MnO2 on ultraporous carbon nano-architectures: correlation of evolving pore-solid structure and electrochemical performance. J. Electrochem. Soc. 155, A246–A252 (2008).

    Article  CAS  Google Scholar 

  21. P.J. Chupas, X. Qui, J.C. Hanson, P.L. Lee, C.P. Grey, and S.J. Billinge: Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Cryst. 36, 1342–1347 (2003).

    Article  CAS  Google Scholar 

  22. A.P. Hammersley: FIT2D: a multi-purpose data reduction, analysis and visualization program. J. Appl. Cryst. 49, 646–652 (2016).

    Article  CAS  Google Scholar 

  23. C.L. Farrow, P. Juhas, J.W. Liu, D. Bryndin, E.S. Bozln, J. Bloch, T. Profen, and S.J. Billinge: PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter., 19, 335219 (2007).

    Article  CAS  Google Scholar 

  24. J.S. Ko, M.B. Sassin, D.R. Rolison, and J.W. Long: Deconvolving double-layer, pseudocapacitance, and battery-like charge-storage mechanisms in nanoscale LiMn204 at 3D carbon architectures. Electrochim. Acta 275, 225–235 (2018).

    Article  CAS  Google Scholar 

  25. M.D. Donakowski, J.M. Wallace, M.B. Sassin, K.W. Chapman, J.F. Parker, J.W. Long, and D.R. Rolison: Crystal engineering in 3D: converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture. CrystEngComm 18, 6035–6048 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Office of Naval Research. J.S.K. is an NRL-NRC Postdoctoral Associate (2016-2018). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors would like to thank Dr. Olaf Borkiewicz of Argonne National Laboratory for data acquisition, integration, and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Long.

Supplementary Material

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, J.S., Donakowski, M.D., Sassin, M.B. et al. Deciphering charge-storage mechanisms in 3D MnOx@carbon electrode nanoarchitectures for rechargeable zinc-ion cells. MRS Communications 9, 99–106 (2019). https://doi.org/10.1557/mrc.2019.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.3

Navigation