Skip to main content

Advertisement

Log in

Thermal stability of two-dimensional titanium carbides Tin+1Cn (MXenes) from classical molecular dynamics simulations

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report the classical molecular dynamics (MD) study of thermal stability of three two-dimensional (2D) titanium carbides Ti2C, Ti3C2, and Ti4C3 (MXenes). Thermal properties of 2D nanomaterials are of fundamental importance and raise particular interest due to their potential applications in nanoelectronics. To investigate the behavior of Tin+1Cn MXenes during heating, structural parameters such as Lindemann indexes, radial distribution functions, and atomistic configurations were calculated. The analysis of MD data allowed us to obtain approximate values of MXene degradation temperatures that are 1050, 1500, and 1700 K for Ti2C, Ti3C2, and Ti3C4 MXenes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Table I.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

Abbreviations

T:

The temperature of the sample

q t :

Lindemann index of an atom i

q:

Lindemann index of the sample

q c :

Critical value of the Lindemann index

r ij :

The distance between atoms i and j

N:

The total number of atoms in the sample

References

  1. A. Navrotsky: Energetics at the nanoscale: impacts for geochemistry, the environment, and materials. MRS Bull. 41, 139 (2016).

    Article  CAS  Google Scholar 

  2. H.A. Alarifi, M. Atiş, C. Özdoğan, A. Hu, M. Yavuz, and Y. Zhou: Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J. Phys. Chem. C 117, 12289 (2013).

    Article  CAS  Google Scholar 

  3. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248 (2011).

    Article  CAS  Google Scholar 

  4. Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A.M. Rao, Y. Gogotsi, V.N. Mochalin, and R. Podila: Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater. 30, 1705714 (2018).

    Article  Google Scholar 

  5. G. Li, K. Kushnir, Y. Dong, S. Chertopalov, A.M. Rao, V.N. Mochalin, R. Podila, and L.V. Titova: Equilibrium and non-equilibrium free carrier dynamics in 2D Ti3C2Tx MXenes: THz spectroscopy study. 2D Mater. 5, 035043 (2018).

    Article  Google Scholar 

  6. S. Chertopalov, and V.N. Mochalin: Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano 12, 6109 (2018).

    Article  CAS  Google Scholar 

  7. D. Er, J. Li, M. Naguib, Y. Gogotsi, and V.B. Shenoy: Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6, 11173 (2014).

    Article  CAS  Google Scholar 

  8. M. Ghidiu, S. Kota, J. Halim, A.W. Sherwood, N. Nedfors, J. Rosen, V.N. Mochalin, and M.W. Barsoum: Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem. Mater. 29, 1099 (2017).

    Article  CAS  Google Scholar 

  9. M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe: Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Fund. Mater. 23, 2185 (2013).

    Article  CAS  Google Scholar 

  10. M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502 (2013).

    Article  CAS  Google Scholar 

  11. M. Naguib, J. Come, B. Dyatkin, V. Presser, P.L. Taberna, P. Simon, M.W. Barsoum, and Y. Gogotsi: MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16, 61 (2012).

    Article  CAS  Google Scholar 

  12. Y. Dong, S.S.K. Mallineni, K. Maleski, H. Behlow, V.N. Mochalin, A.M. Rao, Y. Gogotsi, and R. Podila: Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy 44, 103 (2018).

    Article  CAS  Google Scholar 

  13. A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, and A. Sinitskii: Elastic properties of 2D Ti3C2Tx; MXene monolayers and bilayers. Sci. Adv. 4, eaat0491 (2018).

    Article  Google Scholar 

  14. M. Kurtoglu, M. Naguib, Y. Gogotsi, and M.W. Barsoum: First principles study of two-dimensional early transition metal carbides. MRS Commun. 2, 133 (2012).

    Article  CAS  Google Scholar 

  15. V.N. Borysiuk, V.N. Mochalin, and Y. Gogotsi: Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Ti(n +1)C(n) (MXenes). Nanotechnology 26, 265705 (2015).

    Article  Google Scholar 

  16. Z. Ning, H. Yu, Y. Sanaz and Z. Mohsen Asle: Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study. 2D Mater. 5, 045004 (2018).

    Article  Google Scholar 

  17. V.N. Borysiuk, V.N. Mochalin, and Y. Gogotsi: Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: a molecular dynamics study. Comput. Mater. Sci. 143, 418 (2018).

    Article  CAS  Google Scholar 

  18. J. Li, Y. Du, C. Huo, S. Wang, and C. Cui: Thermal stability of two-dimensional Ti2C nanosheets. Ceram. Int. 41, 2631 (2015).

    Article  CAS  Google Scholar 

  19. Z. Li, L. Wang, D. Sun, Y. Zhang, B. Liu, Q. Hu, and A. Zhou: Synthesis and thermal stability of two-dimensional carbide MXene TI3C2. Mater. Sci. Eng. B 191, 33 (2015).

    Article  CAS  Google Scholar 

  20. Z. Yang, X. Yang, and Z. Xu: Molecular dynamics simulation of the melting behavior of Pt-Au nanoparticles with core-shell structure. J. Phys. Chem. C 112, 4937 (2008).

    Article  CAS  Google Scholar 

  21. K. Zhang, G.M. Stocks, and J. Zhong: Melting and premelting of carbon nanotubes. Nanotechnology 18, 285703 (2007).

    Article  Google Scholar 

  22. J.H. Los, K.V. Zakharchenko, M.I. Katsnelson, and A. Fasolino: Melting temperature of graphene. Phys. Rev. B 91, 045415 (2015).

    Article  Google Scholar 

  23. S.K. Singh, M. Neek-Amal, S. Costamagna, and F.M. Peeters: Rippling, buckling, and melting of single- and multilayer MoS2. Phys. Rev. B 91, 014101 (2015).

    Article  Google Scholar 

  24. N.C. Osti, M. Naguib, A. Ostadhossein, Y. Xie, P.R.C. Kent, B. Dyatkin, G. Rother, W.T. Heller, A.C.T. van Duin, Y. Gogotsi, and E. Mamontov: Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl. Mater. Interfaces 8, 8859 (2016).

    Article  CAS  Google Scholar 

  25. A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard: ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396 (2001).

    Article  Google Scholar 

  26. R. Lotfi, M. Naguib, D.E. Yilmaz, J. Nanda, and A.C.T. van Duin: A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J. Mater. Chem. A 6, 12733 (2018).

    Article  CAS  Google Scholar 

  27. W. Humphrey, A. Dalke, and K. Schuiten: VMD: visual molecular dynamics. J. Mol. Graph. Model. 14, 33 (1996).

    Article  CAS  Google Scholar 

  28. H. Oymak, and F. Erkoc: Titanium coverage on a single-wall carbon nano-tube: molecular dynamics simulations. Chem. Phys. 300, 277 (2004).

    Article  CAS  Google Scholar 

  29. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, and T.F. Kelly: Atomic scale structure of sputtered metal multilayers. Acta Mater. 49, 4005 (2001).

    Article  CAS  Google Scholar 

  30. H.J.C. Berendsen, J.P.M. Postma, W.F. Vangunsteren, A. Dinola, and J.R. Haak: Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).

    Article  CAS  Google Scholar 

  31. Y.-H. Wen, H. Fang, Z.-Z. Zhu, and S.-G. Sun: A molecular dynamics study of shape transformation and melting of tetrahexahedral platinum nanoparticle. Chem. Phys. Lett. 471, 295 (2009).

    Article  CAS  Google Scholar 

  32. A. Piątek, A. Dawid, and Z. Gburski: The properties of small fullerenol cluster (C60(OH)24)7: computer simulation. Spectrochim. Acta A 79, 819 (2011).

    Article  Google Scholar 

  33. R. Essajai, and N. Hassanain: Molecular dynamics study of melting properties of gold nanorods. J. Mol. Liq. 261, 402 (2018).

    Article  CAS  Google Scholar 

  34. H.H. Kart, H. Yildirim, S. Ozdemir Kart, and T. Çağln: Physical properties of Cu nanoparticles: a molecular dynamics study. Mater. Chem. Phys. 147, 204 (2014).

    Article  CAS  Google Scholar 

  35. R. Essajai, A. Rachadi, E. Feddi, and N. Hassanain: MD simulation-based study on the thermodynamic, structural and liquid properties of gold nanostructures. Mater. Chem. Phys. 218, 116 (2018).

    Article  CAS  Google Scholar 

  36. S. Lu, J. Zhang, and H. Duan: Melting behaviors of CoN (N=3,14,38,55, 56) clusters. Chem. Phys. 363, 7 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

VB is grateful to Ministry of Education and Science of Ukraine for financial support (Project No. 0117U003923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadym N. Mochalin.

Nomenclature

T

The temperature of the sample

q i

Lindemann index of an atom i

q

Lindemann index of the sample

q c

Critical value of the Lindemann index

r ij

The distance between atoms i and j

N

The total number of atoms in the sample

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borysiuk, V., Mochalin, V.N. Thermal stability of two-dimensional titanium carbides Tin+1Cn (MXenes) from classical molecular dynamics simulations. MRS Communications 9, 203–208 (2019). https://doi.org/10.1557/mrc.2019.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.2

Navigation