Skip to main content

Detection of low-level humic acid in water using room temperature-synthesized copper (I) oxide colloids


A glucose-reduced, room temperature-synthesized colloidal Cu2O solution (CCS) was used for the first time to detect humic acid (HA), a carcinogen-promoting substance in aqueous solution. The CCS sensor was characterized using standard spectroscopy and microscopy techniques. The sensor evolved as a carboxylic acid-capped peach-pink solution after synthesis. The result of the interaction of the sensor with HA in phosphate buffer solution (pH 7) showed a detection limit of 1.5891 × 10−2 mg/L over a concentration range of 0.00–0.41 mg/L. This finding suggests that the sensor may be useful for monitoring low levels of HA in aqueous environments.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Table I.


  1. 1.

    M.R. Jamalludin, Z. Harun, S.K. Hubadillah, H. Bari, A.F. Ismail, M.H.D. Othman, M.F. Shohur, and M.Z. Yunos: Antifouling polysulfone membranes blended with green SiO2 from rice husk ash (RHA) for humic acid. Chem. Eng. Res. Des. 114, 268–279 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    N. Kawasaki, K. Matsushige, K. Komatsu, A. Kohzu, F.W. Nara, F. Ogishi, M. Yahata, H. Mikami, T. Goto, and A. Imai: Fast and precise method for HPLC-size exclusion chromatography with UV and TOC (NDIR) detection: importance of multiple detectors to evaluate the characteristics of dissolved organic matter. Water Res. 45, 6240–6248 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    X. Qin, F. Liu, G. Wang, and L. Weng: Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography. J. Sep. Sci. 35, 345–3460 (2012).

    Article  Google Scholar 

  4. 4.

    C. Ma, M. Chen, H. Liu, K. Wu, H. He, and K. Wang: A rapid method for the detection of humic acid based on the poly(thymine)-templated copper nanoparticles. Chin. Chem. Lett. 29, 136–138 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    S. Basumallick and S. Santra: Monitoring of ppm level humic acid in surface water using ZnO-chitosan nano-composite as fluorescence probe. Appl. Water Sci 7, 102–1031 (2017).

    Article  Google Scholar 

  6. 6.

    R.T. Lamar, C.O. Daniel, M. Lawrence, and R.B. Paul: A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products. J. AOAC Int 97, 721–730 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    A. Rodrigues, A. Brito, P. Janknecht, M.F. Proenca, and R. Nogueira: Quantification of humic acids in surface water: effects of divalent cations, pH, and filtration. J. Environ. Monit 11, 377–382 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    X. Yuan, S. Yang, J. Fang, X. Wang, H. Ma, Z. Wang, R. Wang, and Y. Zhao: Interaction mechanism between antibiotics and humic acid by UV-Vis spectrometry. Int. J. Environ. Res. Public Health 15, 1–13 (2018).

    Google Scholar 

  9. 9.

    A. Azzouz, K.Y. Goud, N. Raza, E. Ballesteros, S-E. Lee, J. Hong, A. Deep, and K-H Kim: Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. Trends Anal. Chem 110, 1–34 (2019).

    Article  Google Scholar 

  10. 10.

    M. Li, H. Gou, I. Al-Ogaidi, and N. Wu: Nanostructured sensors for detection of heavy metals: a review. ACS Sustain. Chem. Eng. 1, 713–723 (2013).

    Article  Google Scholar 

  11. 11.

    T. Gan, Z. Wang, J. Gao, J. Sun, K. Wu, and H. Wang: Morphology-dependent electrochemical activity of Cu2O polyhedrons and construction of sensor for simultaneous determination of phenolic compounds with gra-phene oxide as reinforcement. Sens. Actuators B 282, 549–558 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    O.J. Fakayode, S.P. Songca, and O.S. Oluwafemi: Neutral red separation property of ultrasmall-gluconic acid capped superparamagnetic iron oxide nanoclusters coprecipitated with goethite and hematite. Sep. Purif. Technol. 192, 47–482 (2018).

    Article  Google Scholar 

  13. 13.

    O.J. Fakayode, S.P. Songca, and O.S. Oluwafemi: Singlet oxygen generation potential of thiolated methoxy- polyethyleneglycol encapsulated superparamagnetic iron oxide. Mater. Lett. 199, 37–40 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    O.J. Fakayode, C.A. Kruger, S.P. Songca, H. Abrahamse, and O.S. Oluwafemi: Photodynamic therapy evaluation of methoxypolyethylenegly-col-thiol-SPIONs-gold-meso-tetrakis (4-hydroxyphenyl) porphyrin conjugate against breast cancer cells. Mater. Sci. Eng. C 92, 737–744 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    S.A. Singh, S. Mukherjee, and G. Madras: Role of CO2 methanation into the kinetics of preferential CO oxidation on Cu/Co3O4. Mol. Catal. 466, 167–180 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    H. Manisha, P.D. Priya Swetha, Y-B. Shim, and K.S. Prasad: Microwave assisted synthesis of hybrid Cu2O microcubes for photocatalysis and electrocatalysis. Mater. Today: Proc 5, 16390–16393 (2018).

    CAS  Google Scholar 

  17. 17.

    M. Balık, V. Bulut, and I.Y. Erdogan: Optical, structural and phase transition properties of Cu2O, CuO and Cu2O/CuO: their photoelectrochemical sensor applications. Int. J. Hydrogen Energy 44, 18744–18755 (2018).

    Article  Google Scholar 

  18. 18.

    H. Zhu, Y. Li, and X. Jiang: Room-temperature synthesis of cuprous oxide and its heterogeneous nanostructures for photocatalytic applications. J. Alloys Compd. 772, 447–459 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    A. Kerour, S. Boudjadar, R. Bourzami, and B. Allouche: Eco-friendly synthesis of cuprous oxide (Cu2O) nanoparticles and improvement of their solar photocatalytic activities. J. Solid State Chem. 263, 79–83 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    O.J. Fakayode, N. Tsolekile, S.P. Songca, and O.S. Oluwafemi: Applications of functionalized nanomaterials in photodynamic therapy. Biophys. Rev. 10, 49–67 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    V.S. Kumar and S. Ganesan: Preparation and characterization of gold nanoparticles with different capping agents. Int. J. Green Nanotechnol. 3, 47–55 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    O. Novotný, K. Cejpek, and J. Velíšek: Formation of carboxylic acids during degradation of monosaccharides. Czech J. Food Sci. 26, 117–131 (2008).

    Article  Google Scholar 

  23. 23.

    A. Paucean, D.C. Vodnar, V. Muresan, F. Fetea, F. Ranga, S.M. Man, S. Muste, and C. Socaciu: Monitoring lactic acid concentration by infrared spectroscopy: a new developed method for Lactobacillus fermenting media with potential food applications. Acta Aliment. 46, 420–427 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    E. Cheraghipour, S. Javadpour, and A.R. Mehdizadeh: Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J. Biomed. Sci. Eng. 5, 71–719 (2012).

    Article  Google Scholar 

  25. 25.

    X. Cheng, L. Zhao, X. Wang, and J. Lin: Sensitive monitoring of humic acid in various aquatic environments with acidic cerium chemilumines-cence detection. Anal. Sci. 23, 1189–1193 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    I. Tarhan and H. Kara: A chemometric study: automated flow injection analysis method for the quantitative determination of humic acid in Ilgin lignite. Arab. J. Chem. 9, 713–720 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    X. Cui and K-H. Choo: Natural organic matter removal and fouling control in low-pressure membrane filtration for water treatment. Environ. Eng. Res 19, 1–8 (2014).

    Article  Google Scholar 

  28. 28.

    X. Zhang, L. Fan, and F.A. Roddick: Impact of the interaction between aquatic humic substances and algal organic matter on the fouling of a ceramic microfiltration membrane. Membranes 8, 1–10 (2018).

    Article  Google Scholar 

  29. 29.

    W. Zhang and B. Jia: Toward antifouling capacitive deionization by using visible-light reduced TiO2/graphene nanocomposites. MRS Commun. 5, 613–617 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    H. Younas, J. Shao, Y. He, G. Fatima, S.T.A. Jaffar, and Z.U.R. Afridi: Fouling-free ultrafiltration for humic acid removal. RSC Adv. 8, 24961–24969 (2018).

    CAS  Article  Google Scholar 

Download references


The authors are grateful to the Nanotechnology and Water Sustainability Research Unit (NanoWS) of the University of South Africa (UNISA) for the resource and financial supports.

Author information



Corresponding author

Correspondence to Olayemi J. Fakayode.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fakayode, O.J., Adekunle, A.S. & Nkambule, T.T.I. Detection of low-level humic acid in water using room temperature-synthesized copper (I) oxide colloids. MRS Communications 9, 1317–1322 (2019).

Download citation