Skip to main content
Log in

A synergistic coordination strategy for colorimetric sensing of chromium(III) ions using gold nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report a simple, facile, and reliable colorimetric system for detection of chromium(III) ions (Cr3+) using citrate- and thiourea-modified gold nanoparticles (AuNPs). The colorimetric sensing strategy is based on the synergistic coordination interaction of citrate and thiourea toward Cr3+ on the surface of AuNPs, leading to the aggregation of AuNPs which produces a color change from red to purple. Under the optimal conditions, this colorimetric sensing system shows an excellent selectivity and sensitivity for Cr3+, and the limit of detection (LOD) is estimated to be 0.05 μM at a signal-to-noise ratio of 3, which is far below the current standard stipulated by U.S. Environmental Protection Agency (1.9 μM). Moreover, this LOD is one and a half orders of magnitude lower than those of previously reported modified AuNPs-based colorimetric methods. Visual color change can be observed when 50 μM of Cr3+ was introduced to the sensing system. Furthermore, this colorimetric sensing system can be employed for detection of Cr3+ in diluted natural water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeng S, Yong K, Roy I, Dinh X, Yu X, Luan F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics. 2011;6(3):491–506.

    Article  CAS  Google Scholar 

  2. Jung J, Lee J, Shinkai S. Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem Soc Rev. 2011;40(9):4464–74.

    Article  CAS  Google Scholar 

  3. Hughes S, Dasary S, Singh A, Glenn Z, Jamison H, Ray P, et al. Sensitive and selective detection of trivalent chromium using hyper Rayleigh scattering with 5, 5′-dithio-bis-(2-nitrobenzoic acid)-modified gold nanoparticles. Sens Actuator B Chem. 2013;178:514–9.

    Article  CAS  Google Scholar 

  4. Chen W, Lin S, Liu C. Capillary electrochromatographic separation of metal ion species with on-line detection by inductively coupled plasma mass spectrometry. Anal Chim Acta. 2000;410(1):25–35.

    Article  CAS  Google Scholar 

  5. Ghaedi M, Shokrollahi A, Kianfar A, Mirsadeghi A, Pourfarokhi A, Soylak M. The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde, 1, 3 propan diimine (BSPDI) loaded on activated carbon. J Hazard Mater. 2008;154(1):128–34.

    Article  CAS  Google Scholar 

  6. Lafleur J, Salin E. Speciation of chromium by high-performance thin-layer chromatography with direct determination by laser ablation inductively coupled plasma mass spectrometry. Anal Chem. 2008;80(17):6821–3.

    Article  CAS  Google Scholar 

  7. Yang W, Zhang Z, Deng W. Simultaneous, sensitive and selective on-line chemiluminescence determination of Cr (III) and Cr (VI) by capillary electrophoresis. Anal Chim Acta. 2003;485(2):169–77.

    Article  CAS  Google Scholar 

  8. Mahato P, Saha S, Suresh E, Liddo R, Parnigotto P, Conconi M, et al. Ratiometric detection of Cr3+ and Hg2+ by a naphthalimide-rhodamine based fluorescent probe, Inor. Chem. 2012;51(3):1769–77.

    CAS  Google Scholar 

  9. Li Y, Xue H. Determination of Cr (III) and Cr (VI) species in natural waters by catalytic cathodic stripping voltammetry. Anal Chim Acta. 2001;448(1):121–34.

    Article  CAS  Google Scholar 

  10. Chai F, Wang C, Wang T, Li L, Su Z. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interf. 2010;2(5):1466–70.

    Article  CAS  Google Scholar 

  11. Liu S, Lu F, Zhu J. Highly fluorescent Ag nanoclusters: microwave-assisted green synthesis and Cr3+ sensing. Chem Commun. 2011;47(9):2661–3.

    Article  CAS  Google Scholar 

  12. Liu B, Tan H, Chen Y. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for Cr (III) ions in urine. Anal Chim Acta. 2013;761:178–85.

    Article  CAS  Google Scholar 

  13. Saha K, Agasti S, Kim C, Li X, Rotello V. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112(5):2739–379.

    Article  CAS  Google Scholar 

  14. Chen Y, Lee I, Sung Y, Wu S. Triazole functionalized gold nanoparticles for colorimetric Cr3+ sensing. Sens Actuator B Chem. 2013;188:354–9.

    Article  CAS  Google Scholar 

  15. Dang Y, Li H, Wang B, Li L, Wu Y. Selective detection of trace Cr3+ in aqueous solution by using 5, 5′-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles. ACS Appl Mater Interf. 2009;1(7):1533–8.

    Article  CAS  Google Scholar 

  16. Jin W, Huang P, Chen Y, Wu F, Wan Y. Colorimetric detection of Cr3+ using gold nanoparticles functionalized with 4-amino hippuric acid. J Nanopart Res. 2015;17(9):1–10.

    Article  Google Scholar 

  17. Xin J, Miao L, Chen S, Wu A. Colorimetric detection of Cr3+ using tripolyphosphate modified gold nanoparticles in aqueous solutions. Anal Methods. 2012;4(5):1259–64.

    Article  CAS  Google Scholar 

  18. Li J, Han C, Wu W, Zhang S, Guo J, Zhou H. Selective and cyclic detection of Cr3+ using poly (methylacrylic acid) monolayer protected gold nanoparticles. N J Chem. 2014;38(2):717–22.

    Article  CAS  Google Scholar 

  19. Frey S, Gong M, Horrocks Jr W. Synergistic coordination in ternary complexes of Eu3+ with aromatic. Beta.-Diketone Ligands and 1, 10-Phenanthroline, Inor. Chem. 1994;33(15):3229–34.

    CAS  Google Scholar 

  20. Lee J, Park J, Lah M, Chin J, Hong J. High-affinity pyrophosphate receptor by a synergistic effect between metal coordination and hydrogen bonding in water. Org Lett. 2007;9(19):3729–31.

    Article  CAS  Google Scholar 

  21. He Y, Cui H. Label free and homogeneous histone sensing based on chemiluminescence resonance energy transfer between lucigenin and gold nanoparticles. Biosens Bioelectron. 2013;47:313–7.

    Article  CAS  Google Scholar 

  22. He Y, Zhang X, Yu H. Gold nanoparticles-based colorimetric and visual creatinine assay. Microchim Acta. 2015;182(11–12):2037–43.

    Article  CAS  Google Scholar 

  23. Ye Y, Liu H, Yang L, Liu J. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Nanoscale. 2012;4(20):6442–8.

    Article  CAS  Google Scholar 

  24. Hamada Y, Cox R, Hamada H. Cu2+-citrate dimer complexes in aqueous solutions. Journal of Basic &Appl Sci. 2015;11:583–9.

    Article  Google Scholar 

  25. Wang H, He F, Yan R, Wang X, Zhu X, Li L. Citrate-induced aggregation of conjugated polyelectrolytes for Al3+-ion-sensing assays. ACS Appl Mater Interf. 2013;5(16):8254–9.

    Article  CAS  Google Scholar 

  26. Pekel N, Savaş H, Güven O. Complex formation and adsorption of V3+, Cr3+ and Fe3+ ions with poly (N-vinylimidazole). Colloid Poly Sci. 2002;280(1):46–51.

    Article  CAS  Google Scholar 

  27. Abdlseed F, El-ajaily M. Complex formation of TiO (IV), Cr (III) and Pb (II) ions using 1, 3-bis (2-hydroxybenzylidene) thiourea as ligand, Inter. J Res Pharm Biomed Sci. 2012;3(3):1031–7.

    CAS  Google Scholar 

  28. Li J, Han C, Wu W, Zhang S, Guo J, Zhou H. Selective and cyclic detection of Cr3+ using poly (methylacrylic acid) monolayer protected gold nanoparticles. New J Chem. 2014;38:717–22.

    Article  CAS  Google Scholar 

  29. Singh A, Kaur S, Kaur A, Aree T, Kaur N, Singh N, et al. Aqueous-phase synthesis of copper nanoparticles using organic nanoparticles: application of assembly in detection of Cr3+. ACS Sustain Chem Eng. 2014;2(4):982–90.

    Article  CAS  Google Scholar 

  30. Dhara A, Guchhait N, Kar S. A novel Cr3+ fluorescence turn-on probe based on rhodamine and isatin framework. J Fluoresc. 2015;25(6):1921–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of this research by the Undergraduate Innovation Fund Project of Southwest University of Science and Technology (Grant No. CX16-096), Foundation of Science and Technology Department of Sichuan Province (Grant No. 2015JY0053), and Teaching Reform Project of Southwest University of Science and Technology (Grant No. 16xn0022) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haili Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, D., Yu, H. A synergistic coordination strategy for colorimetric sensing of chromium(III) ions using gold nanoparticles. Anal Bioanal Chem 408, 8551–8557 (2016). https://doi.org/10.1007/s00216-016-9990-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9990-1

Keywords

Navigation