Skip to main content

Advertisement

Log in

Conductive polymer binder and separator for high energy density lithium organic battery

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The practical realization of rechargeable organic batteries is stalled by their low electron conductivity, which limits the organic-active material content in the electrode composite and results in a low net electrode energy density. Additionally, the dissolution of active materials into the electrolyte causes a short cycle life. In this study, a conductive polymer mixture, poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate, containing a small amount of sugar alcohol was used as the binder and separator in a rechargeable organic battery. Consequently, the active material content was increased up to 80 wt%, and the cycle life was extended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Table I

Similar content being viewed by others

References

  1. T. Nakajima and T. Kawagoe: Polyaniline: structural analysis and application for battery. Synth. Met. 28, C629 (1989).

    Article  CAS  Google Scholar 

  2. K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, and E. Hasegawa: Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359, 351 (2002).

    Article  CAS  Google Scholar 

  3. J. Lee, H. Kim, and M.J. Park: Long-life, high-rate lithium-organic batteries based on naphthoquinone derivatives. Chem. Mater. 28, 2408 (2016).

    Article  CAS  Google Scholar 

  4. J.E. Kwon, C.S. Hyun, Y.J. Ryu, J. Lee, D.J. Min, M.J. Park, B.K. An, and S.Y. Park: Triptycene-based quinone molecules showing multi-electron redox reactions for large capacity and high energy organic cathode materials in Li-ion batteries. J. Mater. Chem. A 6, 3134 (2018).

    Article  CAS  Google Scholar 

  5. M. Yao, S. Umetani, H. Ando, T. Kiyobayashi, N. Takeichi, R. Kondo, and H.T. Takeshita: Rechargeable organic batteries using chloro-substituted naphthazarin derivatives as positive electrode materials. J. Mater. Sci. 52, 12401 (2017).

    Article  CAS  Google Scholar 

  6. Y. Liang, P. Zhang, S. Yang, Z. Tao, and J. Chen: Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 3, 600 (2013).

    Article  CAS  Google Scholar 

  7. T. Yokoji, Y. Kameyama, N. Maruyama, and H. Matsubara: High-capacity organic cathode active materials of 2,20-bis-p-benzoquinone derivatives for rechargeable batteries. J. Mater. Chem. A. 4, 5457 (2016).

    Article  CAS  Google Scholar 

  8. M. Yao, M. Araki, H. Senoh, S. Yamazaki, T. Sakai, and K. Yasuda: Indigo dye as a positive-electrode material for rechargeable lithium batteries. Chem. Lett. 39, 950 (2010).

    Article  CAS  Google Scholar 

  9. M. Kato, S. Noda, T. Kiyobayashi, M. Yao, and Y. Misaki: Fused donor–donor–acceptor triads composed of tetrathiafulvalene and benzoquinone derivatives as the positive electrode materials for rechargeable lithium and sodium batteries. Chem. Lett. 46, 368 (2017).

    Article  CAS  Google Scholar 

  10. M. Kato, T. Masese, M. Yao, N. Takeichi, and T. Kiyobayashi: Organic positive-electrode material utilizing both an anion and cation: a benzoquinone-tetrathiafulvalene triad molecule, Q-TTF-Q, for rechargeable Li, Na, and K batteries. New J. Chem. 43, 1626 (2019).

    Article  CAS  Google Scholar 

  11. S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka, and U.S. Schubent: Polymer-based organic batteries. Chem. Rev. 116, 9438 (2016).

    Article  CAS  Google Scholar 

  12. Y. Fujihara, H. Kobayashi, S. Takaishi, M. Yamashita, and I. Honma: Development of conductive organic cathode using interface charge-transfer. In Abstract Book of The 86th ECSJ Spring Meeting, 3O08, Japan, March, 2019.

    Google Scholar 

  13. H. Ito, H. Nakayama, S. Nakanishi, M. Morita, R. Tsuji, T. Murata, and Y. Morita: Organic thin-film rechargeable battery using stable organic neutral radical. In Abstract Book of The 59th Battery Symposium, 3A04, Japan, 16 Nov. 2017.

    Google Scholar 

  14. P.R. Das, L. Komsiyska, O. Osters, and G. Wittstock: PEDOT:PSS as a functional binder for cathodes in lithium ion batteries. J. Electrochem. Soc. 162, A674 (2015).

    Article  CAS  Google Scholar 

  15. J. Lee and W. Choi: Surface modification of over-lithiated layered oxides with PEDOT:PSS conducting polymer in lithium-ion batteries. J. Electrochem. Soc. 162, A743 (2015).

    Article  CAS  Google Scholar 

  16. F. Wu, J. Liu, L. Li, X. Zhang, R. Luo, Y. Ye, and R. Chen: Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT:PSS conducting polymer. ACS Appl. Mater. Interfaces 8, 23095 (2016).

    Article  CAS  Google Scholar 

  17. S.N. Eliseeva, R.V. Apraksin, E.G. Tolstopjatova, and V.V. Kondratiev: Electrochemical impedance spectroscopy characterization of LiFePO4 cathode material with carboxymethylcellulose and poly-3,4-ethylendioxythiophene/polystyrene sulfonate. Electrochim. Acta 227, 357 (2017).

    Article  CAS  Google Scholar 

  18. Z. Wang, J. Cheng, W. Ni, L. Gao, D. Yang, J.M. Razal, and B. Wang: Poly (3,4-ethylene-dioxythiophene)-poly (styrenesulfonate) glued and graphene encapsulated sulfur-carbon film for high-performance free- standing lithium-sulfur batteries. J. Power Sources 342, 772e778 (2017).

    Google Scholar 

  19. Y. Lu, Q. Zhao, L. Miao, Z. Tao, Z. Niu, and J. Chen: Flexible and free-standing organic/carbon nanotubes hybrid films as cathode for rechargeable lithium-ion batteries. J. Phys. Chem. C 121, 14498 (2017).

    Article  CAS  Google Scholar 

  20. X. Chen, Y. Wu, Z. Huang, X. Yang, W. Li, L.C. Yu, R. Zeng, Y. Luo, and S.L. Chou: C10H4O2S2/graphene composite as a cathode material for sodium-ion batteries. J. Mater. Chem. A 4, 18409 (2016).

    Article  CAS  Google Scholar 

  21. L. Wang, T. Liu, X. Peng, W. Zeng, Z. Jin, W. Tian, B. Gao, Y. Zhou, P.K. Chu, and K. Huo: Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 28, 1704858 (2018).

    Article  Google Scholar 

  22. C. Wang, C. Jiang, Y. Xu, L. Liang, M. Zhou, J. Jiang, S. Singh, H. Zhao, A. Schober, and Y. Lei: A selectively permeable membrane for enhancing cyclability of organic sodium-ion batteries. Adv. Mater. 28, 9182 (2016).

    Article  CAS  Google Scholar 

  23. N. Oyama, Y. Kiya, O. Hatozaki, S. Morioka, and H.D. Abruña: Dramatic acceleration of organosulfur redox behavior by poly (3,4-ethylenedioxythiophene). Electrochem. Solid State Lett. 6, A286 (2003).

    Article  CAS  Google Scholar 

  24. Y. Kiya, A. Iwata, T. Sarukawa, J.C. Henderson, and H.D. Abruña: Poly[dithio-2,5-(1,3,4-thiadiazole)] (PDMcT)–poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode for high-energy lithium/lithium-ion rechargeable batteries. J. Power Sources 173, 522 (2007).

    Article  CAS  Google Scholar 

  25. Y. Sun, S. Yang, P. Du, F. Yan, J. Qu, Z. Zhu, J. Zuo, and C. Zhang: Investigate the effects of EG doping PEDOT/PSS on transmission and anti-reflection properties using terahertz pulsed spectroscopy. Opt. Express 25, 1723 (2017).

    Article  CAS  Google Scholar 

  26. T. Takano, H. Masunaga, A. Fujiwara, H. Okuzaki, and T. Sasaki: PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films. Macromolecules 45, 3859 (2012).

    Article  CAS  Google Scholar 

  27. T.F. Otero, J.G. Martinez, K. Hosaka, and H. Okuzaki: Electrochemical characterization of PEDOT-PSS-Sorbitol electrodes. Sorbitol changes cation to anion interchange during reactions. J. Electroanal. Chem. 657, 23 (2011).

    Article  CAS  Google Scholar 

  28. Y. Zheng, J. Yu, J. Tang, F. Yang, C. Wang, B. Wei, and X. Li: Enhanced photovoltaic performance of PDPP3T bulk heterojunction using D-sorbitol doped PEDOT:PSS. Org. Electron. 62, 491 (2018).

    Article  CAS  Google Scholar 

  29. S.K.M. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.W. Denier van der Gon, W.R. Salaneck, and M. Fahlman: The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synth. Met. 139, 1 (2003).

    Article  Google Scholar 

  30. F. Dumur, N. Gautier, N. Gallego-Planas, Y. Sahin, E. Levillain, N. Mercier, P. Hudhomme, M. Masino, A. Girlando, V. Lloveras, J. Vidal-Gancedo, J. Veciana, and C. Rovira: Novel fused D-A dyad and A-D-A triad incorporating tetrathiafulvalene and p-benzoquinone. J. Org. Chem. 69, 2164 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partial funding for this work was supported by JSPS KAKENHI Grant No. JP19K15689.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minami Kato or Masaru Yao.

Supplementary Material

Supplementary Material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2019.111|url|}.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, M., Sano, H., Kiyobayashi, T. et al. Conductive polymer binder and separator for high energy density lithium organic battery. MRS Communications 9, 979–984 (2019). https://doi.org/10.1557/mrc.2019.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.111

Navigation