Skip to main content
Log in

Prediction of new iodine-containing apatites using machine learning and density functional theory

  • Artificial Intelligence Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The authors develop a computational approach that integrates machine learning (ML) and density functional theory (DFT) with experimental data to predict formable and thermodynamically stable iodine-containing apatites. This is an important problem because radioactive iodine is toxic and capturing it in solid waste forms have implications in remediation treatments. The authors train ML models using 336 compositions and screen 54 iodine-containing compounds in apatite stoichiometry. ML models predict 18 as formable and 24 as nonformable in the apatite structure; 12 compounds were identified to be uncertain. DFT convex hull predicted two to be thermodynamically stable, one as metastable, and nine as unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I
Figure 3
Figure 4
Table II
Table III

Similar content being viewed by others

References

  1. W.J. Weber, R.C. Ewing, C.R.A. Catlow, T.D. de la Rubia, L.W. Hobbs, C. Kinoshita, H. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E. R. Vance and S. J. Zinkle: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 1434–1484 (1998).

    Article  CAS  Google Scholar 

  2. I.W. Donald, B.L. Metcalfe, and R.N.J. Taylor: The immobilization of high level radioactive wastes using ceramics and glasses.. J. Mater. Sci. 32, 5851–5887 (1997).

    Article  CAS  Google Scholar 

  3. Y. Watanabe, T. Ikoma, H. Yamada, Y. Suetsugu, Y. Komatsu, G.W. Stevens, Y. Moriyoshi, and J. Tanaka: Novel long-term immobilization method for radioactive iodine-129 using a Zeolite/Apatite composite sintered body. ACS Appl. Mater. Interfaces 1, 1579–1584 (2009).

    Article  CAS  Google Scholar 

  4. K. Masuda, O. Kato, Y. Tanaka, S. Nakajima, S. Okamoto, T. Sakuragi, and S. Yoshida: Iodine immobilization: Development of solidification process for spent silver-sorbent using hot isostatic press technique. Prog. Nucl. Energy 92, 267–272 (2016).

    Article  CAS  Google Scholar 

  5. B.J. Riley, J.D. Vienna, D.M. Strachan, J.S. McCloy, and J.L. Jerden Jr: Materials and processes for the effective capture and immobilization of radioiodine: a review. J. Nucl. Mater. 470, 307–326 (2016).

    Article  CAS  Google Scholar 

  6. T.J. White and D. ZhiLi: Structural derivation and crystal chemistry of apatites. Acta Crystallogr. B 59, 1–16 (2003).

    Article  CAS  Google Scholar 

  7. T. White, C. Ferraris, J. Kim, and S. Madhavi: Apatite-An adaptive framework structure. Rev. Mineral. Geochem. 57, 307–401 (2005).

    Article  CAS  Google Scholar 

  8. J.Y. Kim, Z. Dong, and T.J. White: Model apatite systems for the stabilization of toxic metals: II, cation and metalloid substitutions in chlorapatites. J. Am. Ceram. Soc. 88, 1253–1260 (2005).

    Article  CAS  Google Scholar 

  9. B. Wopenka and J.D. Pasteris: A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 25, 131–143 (2005).

    Article  CAS  Google Scholar 

  10. L.I. Ardanova, E.I. Get’man, S.L. Loboda, V.V. Prisedsky, T.V. Tkachenko, V.I. Marchenko, V.P. Antonovich, N.A. Chivireva, K.A. Chebishev, and A.S. Lyashenko: Isomorphous substitutions of rare earth elements for calcium in synthetic hydroxyapatite. Inorg. Chem. 49, 10687–10693 (2010).

    Article  CAS  Google Scholar 

  11. M. Stennett, I. Pinnock, and N. Hyatt: Rapid synthesis of Pb5(VO4)3I, for the immobilisation of iodine radioisotopes, by microwave dielectric heating. J. Nucl. Mater. 414, 352–359 (2011).

    Article  CAS  Google Scholar 

  12. T. Yao, F. Lu, H. Sun, J. Wang, R.C. Ewing, and J. Lian: Bulk iodoapatite ceramic densified by spark plasma sintering with exceptional thermal stability. J. Am. Ceram. Soc. 97, 2409–2412 (2014).

    Article  CAS  Google Scholar 

  13. F. Legrain, J. Carrete, A. van Roekeghem, G.K. Madsen, and N. Mingo: Materials screening for the discovery of new half-heuslers: Machine learning versus ab Initio methods. J. Phys. Chem. B 122, 625–632 (2018).

    Article  CAS  Google Scholar 

  14. P.V. Balachandran, S.R. Broderick, and K. Rajan: Identifying the “inorganic gene” for high temperature piezoelectric perovskites through statistical learning. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 467, 2271–2290 (2011).

    CAS  Google Scholar 

  15. P.V. Balachandran, A.A. Emery, J.E. Gubernatis, T. Lookman, C. Wolverton, and A. Zunger: Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory. Phys. Rev. Mater. 2, 043802 (2018).

  16. G. Pilania, P.V. Balachandran, C. Kim, and T. Lookman: Finding new perovskite halides via machine learning. Front. Mater. 3, 19 (2016).

    Article  Google Scholar 

  17. Z. Li, Q. Xu, Q. Sun, Z. Hou, and W.-J. Yin: Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning. Adv. Funct. Mater. 29, 1807280 (2019).

    Article  CAS  Google Scholar 

  18. W. Li, R. Jacobs, and D. Morgan: Predicting the thermodynamic stability of perovskite oxides using machine learning models. Comput. Mater. Sci. 150, 454–463 (2018).

    Article  CAS  Google Scholar 

  19. C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, and M. Scheffler: New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019). doi:10.1126/sciadv.aav0693.

    Article  CAS  Google Scholar 

  20. N. Islam, W. Huang, and H.L. Zhuang: Machine learning for phase selection in multi-principal element alloys. Comput. Mater. Sci. 150, 230–235 (2018).

    Article  CAS  Google Scholar 

  21. F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, and A. Mehta: Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018), doi:10.1126/sciadv.aaq1566.

    Article  CAS  Google Scholar 

  22. J. Wang: Incorporation of iodine into apatite structure: A crystal chemistry approach using artificial neural network. Front. Earth Sci. 3, 20 (2015).

    Article  CAS  Google Scholar 

  23. D. Optiz and R. Maclin: Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (1999).

    Article  Google Scholar 

  24. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton: Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD). JOM 65, 1501–1509 (2013).

    Article  CAS  Google Scholar 

  25. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, and C. Wolverton: The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).

    Article  CAS  Google Scholar 

  26. J. Ito: Silicate apatites and oxyapatites. Am. Miner. 53, 890–907 (1968).

    CAS  Google Scholar 

  27. A.G. Cockbain: The crystal chemistry of apatites. Mineral. Mag. 37, 654–660 (1968).

    Google Scholar 

  28. D.A. Grisafe and F.A. Hummel: Crystal chemistry and color in apatites containing cobalt, nickel and rare-earth ions. Am. Mineral. 55, 1131–1145 (1970).

    CAS  Google Scholar 

  29. D.A. Grisafe and F.A. Hummel: Pentavalent ion substitutions in the apatite structure: Part a. crystal chemistry. J. Solid State Chem. 2, 160–166 (1970).

    Article  CAS  Google Scholar 

  30. E.R. Kriedler and F.A. Hummel: The crystal chemistry of apatite: Structure fields of fluor- and chlorapatite. Am. Mineral. 55, 170–184 (1970).

    Google Scholar 

  31. T. Dordevic, S. Šutovic, J. Stojanovic, and L. Karanovic: Sr, Ba and Cd arsenates with the apatite-type structure. Acta Crystallogr. C 64, i82–i86 (2008).

    Article  CAS  Google Scholar 

  32. Z. Dong, T.J. White, B. Wei, and K. Laursen: Model apatite systems for the stabilization of toxic metals: I, calcium lead vanadate. J. Am. Ceram. Soc. 85, 2515–2522 (2002).

    Article  CAS  Google Scholar 

  33. C.C. Silva, I.F. Vasconcelos, A.S.B. Sombra, and M.A. Valente: Magnetic properties study on fe-doped calcium phosphate. Phys. Scr. 80, 055706 (2009).

  34. T. Baikie, P.H.J. Mercier, M.E. Elcombe, J.Y. Kim, Y.L. Page, L.D. Mitchell, T.J. White, and P.S. Whitfield: Tricilinic apatites. Acta Crystallogr. B 63, 251–256 (2007).

    Article  CAS  Google Scholar 

  35. T. Suzuki, T. Hatsushika, and M. Miyake: Synthetic hydroxyapatites as inorganic cation exchangers: Part 2. J. Chem. Soc.: Faraday Trans. I 78, 3605–3611(1982).

    CAS  Google Scholar 

  36. N.J. Flora, C.H. Yoder, and H.D.B. Jenkins: Lattice energies of apatites and the estimation of ΔHf° (PO3-4, g). Inorg. Chem. 43, 2340–2345 (2004).

    Article  CAS  Google Scholar 

  37. S. Sugiyama: Approach using apatite to studies of energy and environment. Phosphorus Res. Bull. 21, 1–8 (2007).

    Article  CAS  Google Scholar 

  38. K. Matsunaga, H. Inamori, and H. Murata: Theoretical trend of ion exchange ability with divalent cations in hydroxyapatite. Phys. Rev. B 78, 094101 (2008).

  39. P.V. Balachandran and K. Rajan: Structure maps for AI4AII6 (BO4)6X2 apatite compounds via data mining. Acta Crystallogr. B 68, 24–33 (2012).

    Article  CAS  Google Scholar 

  40. O. Muller and R. Roy: The Major Ternary Structural Families (Springer-Verlag, New York, 1974).

    Book  Google Scholar 

  41. L.H. Ahrens: Anion affinity and polarizing power of cations. Nature 169, 463 (1952).

    Article  CAS  Google Scholar 

  42. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  43. L. Pauling: The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1960).

    Google Scholar 

  44. E.V. Anslyn and D.A. Dougherty: Introduction to Structure and Models of Bonding. In Modern Physical Organic Chemistry, edited by J. Murdzek (University Science Books, Sausalito, California, 2006).

    Google Scholar 

  45. L. Breiman: Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  46. A. Liaw and M. Wiener: Classification and regression by randomForest. R News 2, 18 (2002).

    Google Scholar 

  47. J.H. Friedman: Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    Article  Google Scholar 

  48. J.H. Friedman: Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).

    Article  Google Scholar 

  49. B. Greenwell, B. Boehmke, J. Cunningham, and G. Developers: gbm: Generalized Boosted Regression Models, r package version 2.1.5 (2019).

    Google Scholar 

  50. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

  51. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

  52. A.D. Corso: Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).

    Article  CAS  Google Scholar 

  53. P.V. Balachandran, K. Rajan, and J.M. Rondinelli: Electronically driven structural transitions in A10(BO4)6F2 apatites (A = Ca, Sr, Pb, Cd and Hg). Acta Crystallogr. B 70, 612–615 (2014).

    Article  CAS  Google Scholar 

  54. M.P. Fay and M.A. Proschan: Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 4, 1 (2010).

    Article  Google Scholar 

  55. C. Cao, S. Chong, L. Thirion, J.C. Mauro, J.S. McCloy, and A. Goel: Wet chemical synthesis of apatite-based waste forms-A novel room temperature method for the immobilization of radioactive iodine. J. Mater. Chem. A 5, 14331–14342 (2017).

    Article  CAS  Google Scholar 

  56. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013), doi:10.1063/1.4812323.

  57. Q. Wang, D. Kim, D.D. Dionysiou, G.A. Sorial, and D. Timberlake: Sources and remediation for mercury contamination in aquatic systems - a literature review. Enviorn. Pollut. 131, 323–336 (2004).

    Article  CAS  Google Scholar 

  58. M. Toro-González, D.M. Clifford, R. Copping, S. Mirzadeh, and J.V. Rojas: Synthesis and characterization of intrinsically radiolabeled lanthanide phosphate nanoparticles toward biomedical and environmental applications. J. Nanopart. Res. 20, 238 (2018).c

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors acknowledge support from the Advanced Research Computing Services at the University of Virginia (UVa), which maintains the Rivanna supercomputing cluster where we performed the DFT calculations. M.V.A and P.V.B acknowledge support from the UVa start-up funds. T.Q.H acknowledges support from the DARPA-Topological Excitations in Electronics program (grant# D18AP00009). The content ofthe information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. Approved for public release; distribution is unlimited. All authors thank Dr Shruba Gangopadhyay for providing insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna V. Balachandran.

Additional information

These two authors contributed equally to this work.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartnett, T.Q., Ayyasamy, M.V. & Balachandran, P.V. Prediction of new iodine-containing apatites using machine learning and density functional theory. MRS Communications 9, 882–890 (2019). https://doi.org/10.1557/mrc.2019.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.103

Navigation