Skip to main content
Log in

Uncertainty quantification of Kinetic Monte Carlo models constructed on-the-fly using molecular dynamics

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Kinetic Monte Carlo (KMC) models of complex materials and biomolecules are increasingly being constructed using molecular dynamics (MD). A KMC model contains a catalog of states and kinetic pathways, which enables study of the dynamics. The completeness of the catalog is crucial to the model accuracy and is linked to the quality of the MD data used for model construction. Therefore, quantifying the uncertainty due to missing states and pathways is important. A review on computational procedures available for on-the-fly KMC model construction using MD, uncertainty measurement, and algorithms for guiding further MD sampling in an accelerated manner is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. A. Chatterjee and D.G. Vlachos: An overview of spatial microscopic and accelerated Kinetic Monte Carlo methods. J. Comput. Aided Mater. Des. 14(2), 253 (2007).

    Article  Google Scholar 

  2. A.F. Voter: Introduction to the kinetic Monte Carlo method. In Radiat. Eff. Solids, edited by K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga (Springer, NATO Publishing unit, Dordrecht, 2006).

    Google Scholar 

  3. C.R. Schwantes, R.T. McGibbon, and V.S. Pande: Perspective: Markov models for long-timescale biomolecular dynamics. J. Chem. Phys. 141(9), 90901 (2014).

    Article  CAS  Google Scholar 

  4. R.M. Ziff, E. Gulari, and Y. Barshad: Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56(24), 2553 (1986).

    Article  CAS  Google Scholar 

  5. G.H. Gilmer, H.C. Huang, T.D. de la Rubia, J. Dalla Torre, and F. Baumann: Lattice Monte Carlo models of thin film deposition. Thin Solid Films 365(2), 189 (2000).

    Article  CAS  Google Scholar 

  6. G. Henkelman and H. Jonsson: Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys. 115, 9657 (2001).

    Article  CAS  Google Scholar 

  7. A. Chatterjee and S. Bhattacharya: Uncertainty in a Markov state model with missing states and rates: application to a room temperature kinetic model obtained using high temperature molecular. J. Chem. Phys. 143(11), 114109 (2015).

    Article  Google Scholar 

  8. A. Bhoutekar, S. Ghosh, S. Bhattacharya, and A. Chatterjee: A new class of enhanced kinetic sampling methods for building Markov state models. J. Chem. Phys. 147(15), 152702 (2017).

    Article  Google Scholar 

  9. A. Chatterjee: Accelerating rare events and building kinetic Monte Carlo models using temperature programmed molecular dynamics. J. Mater. Res. 33(7), 835 (2017).

    Article  Google Scholar 

  10. D. Frenkel and B. Smit: Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, 1996).

    Google Scholar 

  11. V.S. Pande, K. Beauchamp, and G.R. Bowman: Everything you wanted to know about Markov State Models but were afraid to ask. Methods 52(1), 99 (2010).

    Article  CAS  Google Scholar 

  12. J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J.D. Chodera, C. Schütte, and F. Noé: Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134(17), 174105 (2011).

    Article  Google Scholar 

  13. P. Haldar and A. Chatterjee: Seeking kinetic pathways relevant to the structural evolution of metal nanoparticles. Model. Simul. Mater. Sci. Eng. 23(2), 25002 (2015).

    Article  CAS  Google Scholar 

  14. P. Haldar and A. Chatterjee: Connectivity-list based characterization of 3D nanoporous structures formed via selective dissolution. Acta Mater. 127, 379 (2017).

    Article  CAS  Google Scholar 

  15. S.T. Chill and G. Henkelman: Molecular dynamics saddle search adaptive kinetic Monte Carlo. J. Chem. Phys. 140(21), 214110 (2014).

    Article  Google Scholar 

  16. V.J. Bhute and A. Chatterjee: Building a kinetic Monte Carlo model with a chosen accuracy. J. Chem. Phys. 138, 244112 (2013).

    Article  Google Scholar 

  17. V.J. Bhute and A. Chatterjee: Accuracy of a Markov state model generated by searching for basin escape pathways. J. Chem. Phys. 138, 84103 (2013).

    Article  Google Scholar 

  18. M.R. Sorenson and A.F. Voter: Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112(21), 9599 (2000).

    Article  Google Scholar 

  19. G.C. Boulougouris and D. Frenkel: Monte Carlo sampling of a Markov web. J. Chem. Theory Comput. 1(3), 389 (2005).

    Article  CAS  Google Scholar 

  20. G.C. Boulougouris and D.N. Theodorou: Dynamical integration of a Markovian web: a first passage time approach. J. Chem. Phys. 127, 84903 (2007).

    Article  Google Scholar 

  21. L. Xu and G. Henkelman: Adaptive kinetic Monte Carlo for first-principles accelerated dynamics. J. Chem. Phys. 129, 114104 (2008).

    Article  Google Scholar 

  22. D.J. Wales: Energy landscapes: calculating pathways and rates. Int. Rev. Phys. Chem. 25(1-2), 237 (2006).

    Article  CAS  Google Scholar 

  23. D. Konwar, V.J. Bhute, and A. Chatterjee: An off-lattice, self-learning kinetic Monte Carlo method using local environments. J. Chem. Phys. 135, 174103 (2011).

    Article  Google Scholar 

  24. S. Verma, T. Rehman, and A. Chatterjee: A cluster expansion model for rate constants of surface diffusion processes on Ag, Al, Cu, Ni, Pd and Pt (100) surfaces. Surf. Sci. 613, 114 (2013).

    Article  CAS  Google Scholar 

  25. T. Rehman, M. Jaipal, and A. Chatterjee: A cluster expansion model for predicting the activation barrier of atomic processes. J. Comput. Phys. 243, 244 (2013).

    Article  CAS  Google Scholar 

  26. N. Kulkarni and A. Chatterjee: Capturing local atomic environment dependence of activation barriers in metals using cluster expansion models. J. Phys. Conf. Ser. 759(1), 12041 (2016).

    Article  Google Scholar 

  27. S. Ghosh, A. Chatterjee, and S. Bhattacharya: Time-dependent Markov State Models for single molecule force spectroscopy. J. Chem. Theory Comput. 13(3), 957 (2017).

    Article  CAS  Google Scholar 

  28. A.F. Voter, F. Montalenti, and T.C. Germann: Extending the time scales in atomistic simulation of materials. Annu. Rev. Mater. Res. 32, 321 (2002).

    Article  CAS  Google Scholar 

  29. L.K. Béland, P. Brommer, F. El-Mellouhi, J.-F. Joly, and N. Mousseau: Kinetic activation-relaxation technique. Phys. Rev. E 84(4), 46704 (2011).

    Article  Google Scholar 

  30. R. Miron and K.A. Fichthorn: Accelerated molecular dynamics with the bond-boost method. J. Chem. Phys. 119(12), 6210 (2003).

    Article  CAS  Google Scholar 

  31. A. Laio and M. Parrinello: Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99(20), 12562 (2002).

    Article  CAS  Google Scholar 

  32. A. Chatterjee and S. Bhattacharya: Probing the energy landscape of alanine dipeptide and deca-alanine using temperature as a tunable parameter in molecular dynamics. J. Phys. Conf. Ser. 759(1), 12024 (2016).

    Article  Google Scholar 

  33. T.D. Swinburne and D. Perez: Self-optimized construction of transition rate matrices from accelerated atomistic simulations with Bayesian uncertainty quantification. arXiv:1803.05273v1 (2018).

    Book  Google Scholar 

  34. S. Divi and A. Chatterjee: Accelerating rare events while overcoming the low-barrier problem using a temperature program. J. Chem. Phys. 140(18), 184115 (2014).

    Article  Google Scholar 

  35. V. Imandi and A. Chatterjee: Estimating Arrhenius parameters using temperature programmed molecular dynamics. J. Chem. Phys. 145(3), 34104 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the support from Science and Engineering Research Board, Department of Science and Technology Grant No. SB/S3/CE/022/2014 and Indian National Science Academy Grant No. SP/YSP/120/2015/307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chatterjee.

Electronic supplementary material

43579_2018_8030850_MOESM1_ESM.pdf

SUPPLEMENTARY MATERIAL FOR “Uncertainty Quantification of Kinetic Monte Carlo Models constructed on-the-fly using Molecular Dynamics” 687 KB.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.93|url|}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A. Uncertainty quantification of Kinetic Monte Carlo models constructed on-the-fly using molecular dynamics. MRS Communications 8, 850–857 (2018). https://doi.org/10.1557/mrc.2018.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.93

Navigation