Skip to main content
Log in

Development of forcespun fiber-aligned scaffolds from gelatin-zein composites for potential use in tissue engineering and drug release

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this study, based on the collection process, three-dimensional aligned fiber scaffolds from gelatin and zein protein were manufactured using Forcespinning®. The homogeneous blending of gelatin:zein (1:4) showed improved tensile and good hydrophobic properties (water contact angle of 115 °C). Cell viability, adhesion, proliferation, and drug release were measured. The cell viability was studied with human fibroblasts and a low cytotoxic effect was observed. Berberine drug release was measured and sustained release rate was observed over 15 days. The morphologic features, prolonged drug release, and cytotoxicity results suggest that these fibers could be appropriate for drug delivery and tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, and P.F. Nealey: Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20, 573 (1999).

    Article  CAS  Google Scholar 

  2. C.Y. Tay, S.A. Irvine, F.Y.C. Boey, L.P. Tan, and S. Venkatraman: Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications. Small 7, 1361 (2011).

    Article  CAS  Google Scholar 

  3. H.N. Kim, A. Jiao, N.S. Hwang, M.S. Kim, D.H. Kang, D.H. Kim, and K.Y. Suh: Nanotopography-guided tissue engineering and regenerative medicine. Adv. Drug. Deliv. Rev. 65, 536 (2013).

    Article  CAS  Google Scholar 

  4. X. Xin, M. Hussain, and J.J. Mao: Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28, 316 (2007).

    Article  CAS  Google Scholar 

  5. H. Yoshimoto, Y.M. Shin, H. Terai, and J.P. Vacanti: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24, 2077 (2003).

    Article  CAS  Google Scholar 

  6. R.J. Wade, E.J. Bassin, C.B. Rodell, and J.A. Burdick: Protease-degradable electrospun fibrous hydrogels. Nat. Commun. 6, 6639 (2015).

    Article  CAS  Google Scholar 

  7. Y.J. Tan, X. Tan, W.Y. Yeong, and S.B. Tor: Additive manufacturing of patient-customizable scaffolds for tubular tissues using the melt-drawing method. Materials 9, 893 (2016).

    Article  Google Scholar 

  8. L. Wang, M.W. Chang, Z. Ahmad, H. Zheng, and J.S. Li: Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems. Chem. Eng. J. 307, 661 (2017).

    Article  CAS  Google Scholar 

  9. J. Kazantseva, R. Ivanov, M. Gasik, T. Neuman, and I. Hussainova: Graphene-augmented nanofiber scaffolds demonstrate new features in cells behaviour. Sci. Rep. 6, 30150 (2016).

    Article  CAS  Google Scholar 

  10. Z. Fereshteh, M. Fathi, A. Bagri, and A.R. Boccaccini: Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Mater. Sci. Eng. 68, 613 (2016).

    Article  CAS  Google Scholar 

  11. Y.W. Moon, I.J. Choi, Y.H. Koh, and H.E. Kim: Porous alumina ceramic scaffolds with biomimetic macro/micro-porous structure using three-dimensional (3-D) ceramic/camphene-based extrusion. Ceram. Int. 41, 12371 (2015).

    Article  CAS  Google Scholar 

  12. H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A.P. Tomsia, and R.O. Ritchie: Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28, 50 (2016).

    Article  CAS  Google Scholar 

  13. S. Das, M. Sharma, D. Saharia, K.K. Sarma, M.G. Sarma, B.B. Borthakur, and U. Bora: Data in support of in vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Data Breif 4, 315 (2015).

    Article  Google Scholar 

  14. J.K. Wise, A.L. Yarin, C.M. Megaridis, and M. Cho: Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng. Part A 15, 913 (2009).

    Article  CAS  Google Scholar 

  15. V. Chaurey, F. Block, Y.H. Su, P.C. Chiang, E. Botchwey, C.F. Chou, and N.S. Swami: Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment. Acta Biomater. 8, 3982 (2012).

    Article  CAS  Google Scholar 

  16. J.I. Kim, T.I. Hwang, L.E. Aguilar, C.H. Park, and C.S.A. Kim: Controlled design of aligned and random nanofibers for 3D bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci. Rep. 6, 23761 (2016).

    Article  CAS  Google Scholar 

  17. C.Y. Wang, K.H. Zhang, C.Y. Fan, X.M. Mo, H.J. Ruan, and F.F. Li: Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater. 7, 634 (2011).

    Article  CAS  Google Scholar 

  18. S.H. Park, M.S. Kim, B. Lee, J.H. Park, H.J. Lee, N.K. Lee, N.L. Jeon, and K.Y. Suh: Creation of a hybrid scaffold with dual configuration of aligned and random electrospun fibers. ACS Appl. Mater. Interfaces 8, 2826 (2016).

    Article  CAS  Google Scholar 

  19. J. Feng, D. Zhang, M. Zhu, and C. Gao: Poly(L-lactide) melt spun fiber-aligned scaffolds coated with collagen or chitosan for guiding the directional migration of osteoblasts in vitro. J. Mater. Chem. B 5, 5176 (2017).

    Article  CAS  Google Scholar 

  20. A. Fernandez, S. Torres-Giner, and J.M. Lagaron: Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocoll. 23, 1427 (2009).

    Article  CAS  Google Scholar 

  21. N. Mamidi, H.M. Leija, J. Villela, L. Isenhart, E.V. Barrera, and A. Elías: Fabrication of gelatin-poly(epichlorohydrin-co-ethylene oxide) fiber scaffolds by Forcespinning® for tissue engineering and drug release. MRS Commun. 7, 913 (2017).

    Article  CAS  Google Scholar 

  22. S.Ö. Gönen, M. Erol, and S. Küçükbayrak: Evaluation of the factors influencing the resultant diameter of the electrospun gelatin/sodium alginate nanofibers via Box-Behnken design. Mater. Sci. Eng. C 58, 709 (2016).

    Article  Google Scholar 

  23. E. Corradini, P.S. Curti, A.B. Meniqueti, A.F. Martins, A.F. Rubira, and E.C. Muniz: Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int. J. Mol. Sci. 15, 22438 (2014).

    Article  CAS  Google Scholar 

  24. R. Paliwal and S. Palakurthi: Zein in controlled drug delivery and tissue engineering. J. Control. Release 189, 108 (2014).

    Article  CAS  Google Scholar 

  25. K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. De Hoyos, H. Vasquez, and K. Lozano: Electrospinning to Forcespinning™. Mater. Today 13, 12 (2010).

    Article  CAS  Google Scholar 

  26. C. Guo, L. Zhou, and J. Lv: Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym. Polym. Compos. 21, 449 (2013).

    CAS  Google Scholar 

  27. W. Kong, Y. Zhao, X. Xiao, C. Jin, Y. Liu, and Z. Li: Comparison of anti-bacterial activity of four kinds of alkaloids in Rhizoma coptidis based on microcalorimetry. Chin. J. Chem. 27, 1186 (2009).

    Article  CAS  Google Scholar 

  28. H.H. Yu, K.J. Kim, J.D. Cha, H.K. Kim, Y.E. Lee, N.Y. Choi, and Y.O. You: Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food 8, 254 (2005).

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Consejo Nacional de Ciencia y Tecnologίa de Mexico (CONACyT; Project Number 242269) for financial support. The authors thank Dr. Karina Del Angel for water contact angle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narsimha Mamidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamidi, N., Romo, I.L., Leija Gutiérrez, H.M. et al. Development of forcespun fiber-aligned scaffolds from gelatin-zein composites for potential use in tissue engineering and drug release. MRS Communications 8, 885–892 (2018). https://doi.org/10.1557/mrc.2018.89

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.89

Navigation