Skip to main content
Log in

A novel approach for in situ monitoring of Zn in citrus plants using two-step square-wave anodic stripping voltammetry

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study presents in situ detection of Zn2+ using a novel two-step square-wave anodic stripping voltammetry (SWASV)-based needle-type microsensor for citrus plant applications. A double-barrel bismuth/platinum (Bi/Pt) microelectrode was fabricated with a solid metal tip (~110 urn), which was durable enough to penetrate the thick skin of the citrus leaves and sensitive enough to detect ppb changes in Zn2+ concentration using SWASV. The microelectrode tip size was also determined to reduce mass transport limitation and improve limit of detection. Overall, the developed Bi/Pt microelectrode successfully measured Zn2+ concentrations within the vascular bundle of citrus plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Table I.
Figure 4.

Similar content being viewed by others

References

  1. A.W. Hodges and T.H. Spreen: Economic impacts of citrus greening (HLB) in Florida 2006/07-2010/11. In Electronic Data Information Source (EDIS) FE903 (Gainseville, FL: Food and Resource Economics Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 2012), pp. 1–6.

    Google Scholar 

  2. S. Commerford, K. Gerberich, P. Rajasekaran, M. Young, S. Das, J. Graham, S. Santra, and E. Johnson: Citrus Canker as a bioassay for systemic bactericidal activity of Zinc nanoparticles. Annual Meeting of the American Phytopathological Society. 2016, pp. 62.

    Google Scholar 

  3. J. Church, S.M. Armas, P.K. Patel, K. Chumbimuni-Torres, and W.H. Lee: Development and characterization of needle-type ion-selective microsen-sors for in situ determination of foliar uptake of Zn2+ in citrus plants. Electroanalysisl 19, 1–8 (2017).

    Google Scholar 

  4. W.H. Lee, D.G. Wahman, P.L. Bishop, and J.G. Pressman: Free chlorine and monochloramine application to nitrifying biofilm: comparison of bio-film penetration, activity, and viability. Environ. Sci. Technol. 45, 1412 (2011).

    Article  CAS  Google Scholar 

  5. W.H. Lee, J.G. Pressman, and D.G. Wahman: Three-dimensional free chlorine and monochloramine biofilm penetration: correlating penetration with biofilm activity and viability. Environ. Sci. Technol. 52, 1889 (2018).

    Article  CAS  Google Scholar 

  6. X. Ma, S.M. Armas, M. Soliman, D.A. Lytle, K.Y. Chumbimuni-Torres, L. Tetard, and W.H. Lee: In situ monitoring of Pb2+ leaching from the galvanic joint surface in a prepared chlorinated drinking water. Environ. Sci. Technol. 52, 2126 (2018).

    Article  CAS  Google Scholar 

  7. A.J. Miller, S.J. Cookson, S.J. Smith, and D.M. Wells: The use of micro-electrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J. Exp. Bot. 52, 541 (2001).

    Article  CAS  Google Scholar 

  8. A.J. Miller and S.J. Smith: Nitrate transport and compartmentation in cereal root cells. J. Exp. Bot. 47, 843 (1996).

    Article  CAS  Google Scholar 

  9. I. Newman: Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ. 24, 1 (2001).

    Article  CAS  Google Scholar 

  10. L.A. Newman, L.V. Kochian, M.A. Grusak, and W.J. Lucas: Fluxes of H+ and K+ in corn roots characterization and stoichiometries using ion-selective microelectrodes. Plant Physiol. 84, 1177 (1987).

    Article  CAS  Google Scholar 

  11. J. Wang, J. Lu, S.B. Hocevar, P.A. Farias, and B. Ogorevc: Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem. 72, 3218 (2000).

    Article  CAS  Google Scholar 

  12. V. Rehacek, I. Hotovy, and M. Vojs: Bismuth film voltammetric sensor on pyrolyzed photoresist/alumina support for determination of heavy metals. Electroanalysis 26, 898 (2014).

    Article  CAS  Google Scholar 

  13. W.J. Yi, Y. Li, G. Ran, H.Q. Luo, and N.B. Li: Determination of cadmium (II) by square wave anodic stripping voltammetry using bismuth-antimony film electrode. Sens. Actuators B Chem. 166, 544 (2012).

    Article  Google Scholar 

  14. J. Wang, J. Lu, U.A. Kirgöz, S.B. Hocevar, and B. Ogorevc: Insights into the anodic stripping voltammetric behavior of bismuth film electrodes. Anal. Chim. Acta 434, 29 (2001).

    Article  CAS  Google Scholar 

  15. G.H. Hwang, W.K. Han, J.S. Park, and S.G. Kang: Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 76, 301 (2008).

    Article  CAS  Google Scholar 

  16. P.N. Bartlett, G. Denuault, and M.F.B. Sousa: A study of the preconcentra-tion and stripping voltammetry of Pb (II) at carbon electrodes. Analyst 125, 1135 (2000).

    Article  CAS  Google Scholar 

  17. W.H. Lee, J.-H. Lee, W.-H. Choi, A.A. Hosni, I. Papautsky, and P.L. Bishop: Needle-type environmental microsensors: design, construction and uses of microelectrodes and multi-analyte MEMS sensor arrays. Meas. Sci. Technol. 22, 042001 (2011).

    Article  Google Scholar 

  18. F. Hijaz and N. Killiny: Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange). PLoS ONE 9, e101830 (2014).

    Article  Google Scholar 

  19. Y.P. Kalra: Handbook of Reference Methods for Plants Analysis, 4th ed. (Taylor & Francis Group, Boca Raton, FL, 1998), pp. 53–71.

    Google Scholar 

  20. S. Tian, L. Lu, J.M. Labavitch, S.M. Webb, X. Yang, P.H. Brown, and Z. He: Spatial imaging of Zn and other elements in Huanglongbing-affected grapefruit by synchrotron-based micro X-ray fluorescence investigation. J. Exp. Bot. 65, 953 (2014).

    Article  CAS  Google Scholar 

  21. G. Sanna, M.I. Pilo, P.C. Piu, A. Tapparo, and R. Seeber: Determination of heavy metals in honey by anodic stripping voltammetry at microelectrodes. Anal. Chim. Acta 415, 165 (2000).

    Article  CAS  Google Scholar 

  22. J.H. Graham, L.W. Timmer, and D. Fardelmann: Toxicity of fungicidal copper in soil to citrus seedlings and vesicular-arbuscular mycorrhizal fungi. Phytopathology 76, 66 (1986).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by Citrus Disease Research and Extension (CDRE) (grant no. 2016-70016-24828/project accusation no. 1008984) from the USDA National Institute of Food and Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Hyoung Lee.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.61

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Church, J., Lee, W.H. A novel approach for in situ monitoring of Zn in citrus plants using two-step square-wave anodic stripping voltammetry. MRS Communications 8, 404–410 (2018). https://doi.org/10.1557/mrc.2018.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.61

Navigation