Skip to main content
Log in

Thermoelectric figure of merit and thermal conductivity of type-l clathrate alloy nanowires

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Clathrates based on Si and Ge have very low lattice thermal conductivity (~1 W/m-K). This value can potentially be further reduced by alloying and nano-structuring. In this work, the thermal conductivity of Si and Ge clathrates alloy have been investigated using model based on the relaxation time approximation. By including alloy scattering, we find that the lattice thermal conductivity of Ba8Cu6Si40 ¡s reduced by 50% from 1.64 to 0.80 W/m-K in Ba8Cu6Si40(1-x)Ge40x alloy. Further ~90% reduction of the thermal conductivity is possible for nanowire clathrate alloys. The ultra-low thermal conductivity in the nanowire will be very suitable for the thermoelectric application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  2. N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri: Nanoparticle-in-alloy approach to efficient thermoelectrics: suicides in sige. Nano Lett. 9, 711–715 (2009).

    Article  CAS  Google Scholar 

  3. S. Witanachchi, R. Hyde, M. Beekman, D. Mukherjee, P. Mukherjee, and G.S. Nolas: Synthesis and characterization of bulk and thin film clathrates for solid state power conversion applications. In 2006 25th International Conference on Thermoelectrics (2006) pp. 44–47.

    Chapter  Google Scholar 

  4. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S.R. Phillpot: Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    Article  CAS  Google Scholar 

  5. A. Goetzberger and C. Hebling: Photovoltaic materials, past, present, future. Sol. Energy Mater. Sol. Cells 62, 1–19 (2000).

    Article  CAS  Google Scholar 

  6. B. Zalba, J.M. Mar’m, L.F. Cabeza, and H. Mehling: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003).

    Article  CAS  Google Scholar 

  7. P. Kaur, S. Chakraverty, A.K. Ganguli, and C. Bera: High anisotropic thermoelectric effect in palladium phosphide sulphide. Phys. Status Solidi (b) 254, 1700021 (2017).

    Article  Google Scholar 

  8. L. Bjerg, B.B. Iversen, and G.K.H. Madsen: Modeling the thermal conductivities of the zinc antimonides znsb and zn4sb3. Phys. Rev. B 89, 024304 (2014).

    Article  Google Scholar 

  9. M. Beekman and A. VanderGraaff: High-temperature thermal conductivity of thermoelectric clathrates. J. Appl. Phys. 121, 205105 (2017).

    Article  Google Scholar 

  10. J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack: Glasslike heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett. 82, 779–782 (1999).

    Article  CAS  Google Scholar 

  11. A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, and G.D. Stucky: Large thermoelectric figure of merit at high temperature in czochralski-grown clathrate ba8ga16ge30. J. Appl. Phys. 99, 023708 (2006).

    Article  Google Scholar 

  12. J.-Y. Yang, L. Cheng, and M. Hu: Unravelling the progressive role of rattlers in thermoelectric clathrate and strategies for performance improvement: concurrently enhancing electronic transport and blocking phononic transport. Appl. Phys. Lett. 111, 242101 (2017).

    Article  Google Scholar 

  13. S. Christensen, M.S. Schmkel, K.A. Borup, G.K.H. Madsen, G.J. Mclntyre, S.C. Capelli, M. Christensen, and B.B. Iversen: glass-like thermal conductivity gradually induced in thermoelectric sr8ga16ge30 clathrate by off-centered guest atoms. J. Appl. Phys. 119, 185102 (2016).

    Article  Google Scholar 

  14. T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita: Phonon-glass electron-crystal thermoelectric clathrates: experiments and theory. Rev. Mod. Phys. 86, 669–716 (2014).

    Article  CAS  Google Scholar 

  15. M. Beekman, W. Schnelle, H. Borrmann, M. Baitinger, Y. Grin, and G. S. Nolas: Intrinsic electrical and thermal properties from single crystals of na24si136. Phys. Rev. Lett. 104, 018301 (2010).

    Article  CAS  Google Scholar 

  16. G.S. Nolas, D.G. Vanderveer, A.P. Wilkinson, and J.L. Cohn: Temperature dependent structural and transport properties of the type ii clathrates a8na16e136 (a = cs or rb and e = ge or si). J. Appl. Phys. 91, 8970–8973 (2002), https://doi.Org/10.1063/1.1471370.

    Article  CAS  Google Scholar 

  17. G.K.H. Madsen, A. Katre, and C. Bera: Calculating the thermal conductivity of the silicon clathrates using the quasi-harmonic approximation. Phys. Status Solidi (a) 213, 802–807 (2016).

    Article  CAS  Google Scholar 

  18. H. Euchner, S. Paillïes, V.M. Giordano, and M. de Boissieu: Understanding lattice thermal conductivity in thermoelectric clathrates: A density functional theory study on binary si-based type-i clathrates. Phys. Rev. B 97, 014304 (2018).

    Article  CAS  Google Scholar 

  19. A. Togo, F. Oba, and I. Tanaka: First-principles calculations of the ferroe-lastic transition between rutile-type and CaCI2-type Si02 at high pressures. Phys. Rev. B 78, 134106 (2008).

    Article  Google Scholar 

  20. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  21. P.G. Klemens: The scattering of low frequency lattice waves by static imperfections. Proc. Phys. Soc. A68, 1113–1128 (1955).

    Article  Google Scholar 

  22. B. Abeles: Lattice thermal conductivity of disordered semiconductor alloys at high temperature. Phys. Rev. 131, 1906–1911 (1963).

    Article  Google Scholar 

  23. R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, and A. Majumdar: Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008).

    Article  Google Scholar 

  24. C. Bera, M. Soulier, C. Navone, G. Roux, J. Simon, S. Volz, and N. Mingo: Thermoelectric properties of nanostructured si1 - xgex and potential for further improvement. J. Appl. Phys. 108, 124306 (2010).

    Article  Google Scholar 

  25. A.J. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen, and D. Vashaee: Modeling study of thermoelectric sige nano-composites. Phys. Rev. B 80, 155327 (2009).

    Article  Google Scholar 

  26. N. Mingo: Calculation of si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003).

    Article  Google Scholar 

  27. G.K.H. Madsen and D.J. Singh: BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys. Commun. 175, 67–71 (2006).

    Article  CAS  Google Scholar 

  28. X. Yan, M. Falmbigl, S. Laumann, A. Grytsiv, E. Bauer, P. Rogl, and S. Paschen: Structural and thermoelectric properties of ba8cuxsi23-xge23. J. Electron. Mater. 41, 1159–1164 (2012).

    Article  CAS  Google Scholar 

  29. X. Yan, M.X. Chen, S. Laumann, E. Bauer, P. Rogl, R. Podloucky, and S. Paschen: Thermoelectric properties of ba-cu-si clathrates. Phys. Rev. B 85, 165127 (2012).

    Article  Google Scholar 

  30. P. Kaur and C. Bera: Effect of alloying on thermal conductivity and thermoelectric properties of CoAsS and CoSbS. Phys. Chem. Chem. Phys. 19, 24928–24933 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank DST (INT/AUSTRIA/BMWF/P-02/2018) and the DFG within the SPP1386 (DFG: MA 5487/2-1) for financial support. The authors acknowledge NPSF PARAM Yuva-II HPC for the computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Bera.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.242

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Madsen, G.K.H. & Bera, C. Thermoelectric figure of merit and thermal conductivity of type-l clathrate alloy nanowires. MRS Communications 9, 370–374 (2019). https://doi.org/10.1557/mrc.2018.242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.242

Navigation