Skip to main content
Log in

Self-healing liquid-infused surfaces with high transparency for optical devices

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The glass surfaces used for optical devices are necessary to have high transparency. Here we propose to take advantage of tube-like Si02 textures to trap lubricant liquid inside aiming to prepare novel slippery liquid-infused porous surfaces (SLIPS). As a consequence, SLIPS with high transparency were synthesized on glass substrate successfully. The capillary action of unique tubular structure induces the ion migration of adjacent Krytox 100, thus endowing SLIPS with the self-healing property. Moreover, the remarkable slip behavior enables these surfaces to possess the self-cleaning and anti-biofouling performances. The current work might provide a promising candidate for long-term transparent optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. L. Zhang, C.-H. Xue, M. Cao, M.-M. Zhang, M. Li, and J.-Z. Ma: Highly transparent fluorine-free superhydrophobic silica nanotube coatings. Chem. Eng. J. 320, 244 (2017).

    Article  CAS  Google Scholar 

  2. K. Golovin, D.H. Lee, J.M. Mabry, and A. Tuteja: Transparent, flexible, superomniphobic surfaces with ultra-low contact angle hysteresis. Angew. Chem. Int. Ed. 52, 13007 (2013).

    Article  CAS  Google Scholar 

  3. W. Barthlott and C. Neinhuis: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1 (1997).

    Article  CAS  Google Scholar 

  4. P. Dimitrakellis and E. Gogolides: Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: a review. Adv. Colloid Interface Sci. 254, 1 (2018).

    Article  CAS  Google Scholar 

  5. W. Wang, Y.-Q. Liu, Y. Liu, B. Han, H. Wang, D.-D. Han, J.-N. Wang, Y.-L. Zhang, and H.-B. Sun: Direct laser writing of superhydrophobic PDMs elastomers for controllable manipulation via Marangoni effect. Adv. Funct. Mater. 27, 1702946 (2017).

    Article  Google Scholar 

  6. X. Tang and L. Wang: Loss-free photo-manipulation of droplets by pyroelectro-trapping on superhydrophobic surfaces. ACS Nano 12, 8994 (2018).

    Article  CAS  Google Scholar 

  7. V. Jokinen, E. Kankuri, S. Hoshian, S. Franssila, and R.H.A. Ras: Superhydrophobic blood-repellent surfaces. Adv. Mater. 30, 1705104 (2018).

    Article  Google Scholar 

  8. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu: Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14, 1857 (2002).

    Article  CAS  Google Scholar 

  9. X. Tian, S. Shaw, K.R. Lind, and L. Cademartiri: Thermal processing of silicones for green, scalable, and healable superhydrophobic coatings. Adv. Mater. 28, 3677 (2016).

    Article  CAS  Google Scholar 

  10. G.B. Hwang, K. Page, A. Patir, S.P. Nair, E. Allan, and L.P. Parkin: The anti-biofouling properties of superhydrophobic surfaces are short-lived. ACS Nano 12, 6050 (2018).

    Article  CAS  Google Scholar 

  11. L. Bocquet and E. Lauga: A smooth future? Nat Mater. 10, 334 (2011).

    Article  CAS  Google Scholar 

  12. R. Poetes, K. Holtzmann, K. Franze, and U. Steiner: Metastable underwater superhydrophobicity. Phys. Rev. Lett. 105, 166104 (2010).

    Article  Google Scholar 

  13. D. Quéré: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71 (2008).

    Article  Google Scholar 

  14. R.G. Karunakaran, C.-H. Lu, Z. Zhang, and S. Yang: Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm). Langmuir 27, 4594 (2011).

    Article  CAS  Google Scholar 

  15. F. Li, M. Du, Z. Zheng, Y. Song, and Q. Zheng: A facile, multifunctional, transparent, and superhydrophobic coating based on a nanoscale porous structure spontaneously assembled from branched silica nanoparticles. Adv. Mater. Interfaces 2, 1500201 (2015).

    Article  Google Scholar 

  16. T.-S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, and J. Aizenberg: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443 (2011).

    Article  CAS  Google Scholar 

  17. M. Zhang, Q. Liu, R. Chen, H. Chen, D. Song, J. Liu, H. Zhang, R. Li, Y. Wang, and J. Wang: Lubricant-infused coating by double-layer ZnO on aluminium and its anti-corrosion performance. J. Alloys Compd. 764, 730 (2018).

    Article  CAS  Google Scholar 

  18. I. Oh, C. Keplinger, J. Cui, J. Chen, G.M. Whitesides, J. Aizenberg, and Y. Hu: Dynamically actuated liquid-infused poroelastic film with precise control over droplet dynamics. Adv. Funct. Mater. 28, 1802632 (2018).

    Article  Google Scholar 

  19. P. Zhang, G. Liu, D. Zhang, and H. Chen: Liquid-infused surfaces on elec-trosurgical instruments with exceptional antiadhesion and low-damage performances. ACS Appl. Mater. Interfaces 10, 33713 (2018).

    Article  CAS  Google Scholar 

  20. M. Liu, Y. Hou, J. Li, L. Tie, and Z. Guo: Transparent slippery liquid-infused nanoparticulate coatings. Chem. Eng. J. 337, 462 (2018).

    Article  CAS  Google Scholar 

  21. K. Rykaczewski, S. Anand, S.B. Subramanyam, and K.K. Varanasi: Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29, 5230 (2013).

    Article  CAS  Google Scholar 

  22. Y. Lu, S. Sathasivam, J. Song, C.R. Crick, C.J. Carmalt, and I. P. Parkin. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347, 1132 (2015).

    Article  CAS  Google Scholar 

  23. C. Jia, J. Song, Y. Jin, and O.J. Rojas: Controlled-release drug carriers based hierarchical silica microtubes templated from cellulose acetate nanofibers. J. Appl. Polym. Sci. 132, 38 (2015).

    Google Scholar 

  24. F. Ambroz, T.J. Macdonald, V. Martis, and L.P. Parkin: Evaluation of the bet theory for the characterization of meso and microporous MOFs. Small Methods 0, 1800173 (2018).

    Article  Google Scholar 

  25. H. Chen, P. Zhang, L. Zhang, H. Liu, Y. Jiang, D. Zhang, Z. Han, and L. Jiang: Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532, 85 (2016).

    Article  CAS  Google Scholar 

  26. Y. Wei, Z. Tian, H. Gies, R. Xu, H. Ma, R. Pei, W. Zhang, Y. Xu, L. Wang, and K. Li: Inside cover: ionothermal synthesis of an aluminophosphate molecular sieve with 20-ring pore openings. Angew. Chem., Int. Ed. 49, 5200 (2010).

    Article  Google Scholar 

  27. C. Ishino, M. Reyssat, E. Reyssat, K. Okumura, and D. Quere: Wicking within forests of micropillars. Europhys. Lett. 79, 56005 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51603053), the Application Technology Research and Development Plan of Heilongjiang Province (GX16A008), the Fundamental Research Funds of the Central University and the Application Technology Research and Development Projects of Harbin (2015RAQXJ038), Defense Industrial Technology Development Program (JCKY2016604C006) and National Key R&D Program of China (2016YFE0202700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.241

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, Q., Liu, J. et al. Self-healing liquid-infused surfaces with high transparency for optical devices. MRS Communications 9, 92–98 (2019). https://doi.org/10.1557/mrc.2018.241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.241

Navigation