Skip to main content
Log in

Localized plasmonic fields of nanoantennas enhance second harmonic generation from two-dimensional molybdenum disulfide

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Frequency-dependence and magnitude of second harmonic generation (SHG) from ~4 × 10 & 5 nm & 2 molybdenum disulfide (MoS2) monolayers was examined in presence of single 150 nm plasmonic gold@silica shell@core nanoantenna monomer and dimers. Quantitative agreement between discrete dipole approximation-calculated fields and measured SHG enhancements was found. SHG from MoS2 was enhanced up to 1.88 × upon deposition of a plasmonic nanoantenna-dimer with 170 nm gap, reaching maximal normalized SHG conversion efficiency of 0.0250%/W. Pump losses attributable to plasmonic damping, e.g., scattering and/or hot-electron injection into MoS2, were apparent. Linear and nonlinear optical activity of MoS2 and nanoantenna controls were compared with literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. G.T. Forcherio and D.K. Roper: Spectral characteristics of noble metal nanoparticle-molybdenum disulfide heterostructures. Adv. Opt. Mater. 4, 1288 (2016).

    Article  CAS  Google Scholar 

  2. E. Palacios, S. Park, S. Butun, L. Lauhon, and K. Aydin: Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna. Appl. Phys. Lett. 111, 031101 (2017).

    Article  Google Scholar 

  3. U. Bhanu, M.R. Islam, L. Tetard, and S.I. Khondaker: Photoluminescence quenching in gold-MoS2 hybrid nanoflakes. Sci. Rep. 4, 5575 (2014).

    Article  CAS  Google Scholar 

  4. Y. Yu, Z. Ji, S. Zu, B. Du, Y. Kang, Z. Li, Z. Zhou, K. Shi, and Z. Fang: Ultrafast plasmonic hot electron transfer in Au nanoantenna/MoS2 heterostructures. Adv. Funct. Mater. 26, 6394 (2016).

    Article  CAS  Google Scholar 

  5. G.T. Forcherio, J.R. Dunklin, C. Backes, Y. Vaynzof, M. Benamara, and D.K. Roper: Gold nanoparticles physicochemically bonded onto tungsten disulfide nanosheet edges exhibit augmented plasmon damping. AIP Adv. 7, 075103 (2017).

    Article  Google Scholar 

  6. D.J. Clark, V. Senthilkumar, C.T. Le, D.L. Weerawarne, B. Shim, J.I. Jang, J.H. Shim, J. Cho, Y. Sim, M.-J. Seong, S.H. Rhim, A.J. Freeman, K.-H. Chung, and Y.S. Kim: Strong optical nonlinearity of CVD-grown MoS2 monolayer as probed by wavelength-dependent second-harmonic generation. Phys. Rev. B 90, 121409 (2014).

    Article  Google Scholar 

  7. L.M. Malard, T.V. Alencar, A.P.M. Barboza, K.F. Mak, and A.M. de Paula: Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401 (2013).

    Article  Google Scholar 

  8. D. Li, W. Xiong, L. Jiang, Z. Xiao, H. Rabiee Golgir, M. Wang, X. Huang, Y. Zhou, Z. Lin, J. Song, S. Ducharme, L. Jiang, J.-F. Silvain, and Y. Lu: Multimodal nonlinear optical imaging of MoS2 and MoS2-based van der Waals heterostructures. ACS Nano 10, 3766 (2016).

    Article  CAS  Google Scholar 

  9. G.T. Forcherio, J. Riporto, J.R. Dunklin, Y. Mugnier, R.L. Dantec, L. Bonacina, and D.K. Roper: Nonlinear optical susceptibility of two-dimensional WS2 measured by hyper Rayleigh scattering. Opt. Lett. 42, 5018 (2017).

    Article  CAS  Google Scholar 

  10. T. Fryett, A. Zhan, and A. Majumdar: Cavity nonlinear optics with layered materials. Nanophotonics. 7, 355 (2017).

    Article  Google Scholar 

  11. K. Chen, C. Durak, J.R. Heflin, and H.D. Robinson: Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films. Nano Lett. 7, 254 (2007).

    Article  CAS  Google Scholar 

  12. M. Ishifuji, M. Mitsuishi, and T. Miyashita: Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes. J. Am. Chem. Soc. 12, 4418 (2009).

    Article  Google Scholar 

  13. Y. Pu, R. Grange, C.L. Hsieh, and D. Psaltis: Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys. Rev. Lett. 104, 207402 (2010).

    Article  Google Scholar 

  14. Y. Zakharko, T. Nychyporuk, L. Bonacina, M. Lemiti, and V. Lysenko: Plasmon-enhanced nonlinear optical properties of SiC nanoparticles. Nanotechnology 24, 055703 (2013).

    Article  CAS  Google Scholar 

  15. G. Grinblat, M. Rahmani, E. Cortes, M. Caldarola, D. Comedi, S.A. Maier, and A.V. Bragas: High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer. Nano Lett. 14, 6660 (2014).

    Article  CAS  Google Scholar 

  16. L. Sánchez-García, C. Tserkezis, M.O. Ramírez, P. Molina, J.J. Carvajal, M. Aguiló, F. Díaz, J. Aizpurua, and L.E. Bausá: Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures. Opt. Express 24, 8491 (2016).

    Article  Google Scholar 

  17. B. Metzger, M. Hentschel, T. Schumacher, M. Lippitz, X. Ye, C.B. Murray, B. Knabe, K. Buse, and H. Giessen: Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett. 14, 2867 (2014).

    Article  CAS  Google Scholar 

  18. T.K. Fryett, K.L. Seyler, J. Zheng, C. Liu, X. Xu, and A. Majumdar: Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2. 2D Mater. 4, 015031 (2016).

    Article  Google Scholar 

  19. Z. Wang, Z. Dong, H. Zhu, L. Jin, M.-H. Chiu, L.-J. Li, Q.-H. Xu, G. Eda, S.A. Maier, A.T.S. Wee, C.-W. Qiu, and J.K.W. Yang: Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates. ACS Nano 12, 1859 (2018).

    Article  CAS  Google Scholar 

  20. A.R. Klots, A.K.M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, D. Caudel, N.J. Ghimire, J. Yan, B.L. Ivanov, K.A. Velizhanin, A. Burger, D.G. Mandrus, N.H. Tolk, S.T. Pantelides, and K.I. Bolotin: Probing excitonic states in ultraclean suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 4, 6608 (2014).

    Article  CAS  Google Scholar 

  21. C.Y. Wang and G.Y. Guo: Nonlinear optical properties of transition-metal dichalcogenide MX2 (M = Mo, W; X = S, Se) monolayers and trilayers from first-principles calculations. J. Phys. Chem. C 119, 13268 (2015).

    Article  Google Scholar 

  22. M.L. Trolle, G. Seifert, and T.G. Pedersen: Theory of excitonic second-harmonic generation in monolayer MoS2. Phys. Rev. B 89, 235410 (2014).

    Article  Google Scholar 

  23. N. Mao, Y. Chen, D. Liu, J. Zhang, and L. Xie: Solvatochromic effect on the photoluminescence of MoS2 monolayers. Small 9, 1312 (2013).

    Article  CAS  Google Scholar 

  24. B. Mukherjee, F. Tseng, D. Gunlycke, K. Kumar, G. Eda, and E. Simsek: Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible. Opt. Mater. Express 5, 447 (2015).

    Article  Google Scholar 

  25. S. Palomba, M. Danckwerts, and L. Novotny: Nonlinear plasmonics with gold nanoparticle antennas. J. Opt. Pure Appl. Opt. 11, 114030 (2009).

    Article  Google Scholar 

  26. G.F. Walsh and L. Dal Negro: Enhanced second harmonic generation from Au nanoparticle arrays by femtosecond laser irradiation. Nanoscale 5, 7795 (2013).

    Article  CAS  Google Scholar 

  27. M.D. McMahon, D. Ferrara, C.T. Bowie, R. Lopez, and R.F. Haglund Jr: Second harmonic generation from resonantly excited arrays of gold nanoparticles. Appl. Phys. B 87, 259 (2007).

    Article  CAS  Google Scholar 

  28. S. Kadkhodazadeh, J.R. De Lasson, M. Beleggia, H. Kneipp, J.B. Wagner, and K. Kneipp: Scaling of the surface plasmon resonance in gold and silver dimers probed by EELS. J. Phys. Chem. C 118, 5478 (2014).

    Article  CAS  Google Scholar 

  29. S.C. Kumar, G.K. Samanta, K. Devi, and M. Ebrahim-Zadeh: High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation. Opt. Express 19, 11152 (2011).

    Article  CAS  Google Scholar 

  30. K.L. Seyler, J.R. Schaibley, P. Gong, P. Rivera, A.M. Jones, S. Wu, J. Yan, D.G. Mandrus, W. Yao, and X. Xu: Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF EEC-1260301, NSF Graduate Research Fellowship awarded to G.T.F, The University of Arkansas Foundation, Walton Charitable Foundation, NCCR MUST instrument of the Swiss National Research Council, and USARL Cooperative Agreement Number W911NF-17-2-0057 award to G.T.F. DDA simulations were performed on the supercomputers of the Arkansas High-Performance Computing Center, supported by NSF 918970 and 959124. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the National Science Foundation, Army Research Laboratory or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

G.T.F. directed the work, performed experiments and data analysis, and drafted text and figures for the manuscript. L.B. and J.-P.W. developed the experimental setup. D.K.R. initiated consideration of nanoantenna-enhanced nonlinear activity in TMD. L.B. and D.K.R. refined compilation of text and figures. The authors acknowledge 2D Semiconductors for supplying CVD MoS2 samples. The authors thank Drs. Gregory J. Salamo, Surendra P. Singh, Hameed A. Naseem, and Jeremy R. Dunklin for engaging discussions of the data, Dr. Vasyl Kilin for supporting the experiments, and Manoj Seeram for DDA assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory T. Forcherio.

Additional information

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.133.

Supplementary Material

43579_2018_8031029_MOESM1_ESM.pdf

Localized plasmonic fields of nanoantennas enhance second harmonic generation from two-dimensional molybdenum disulfide 687 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forcherio, G.T., Bonacina, L., Wolf, JP. et al. Localized plasmonic fields of nanoantennas enhance second harmonic generation from two-dimensional molybdenum disulfide. MRS Communications 8, 1029–1036 (2018). https://doi.org/10.1557/mrc.2018.133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.133

Navigation