Skip to main content
Log in

A review on phospholipid vesicles flowing through channels

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The flow of particles through confined volumes has appeared under different contexts in nature and technology. Some examples include the flow of red blood cells or drug delivery vehicles through capillaries, or surfactant-based particles in nano- or microfluidic cells. The molecular composition of the particles along with external conditions and the characteristics of the confined volume impact the response of the particle to flow. This review focuses on the problem of phospholipid vesicles constrained to flowing in channels. The review examines how experimental and computational approaches have been harnessed to study the response of these particles to the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Q.M. Qi and E.S.G. Shaqfeh: Theory to predict particle migration and margination in the pressure-driven channel flow of blood. Phys. Rev. Fluids 2, 093102 (2017).

    Article  Google Scholar 

  2. A. Moretti, B. Zhang, B. Lee, M. Dutt, and K.E. Uhrich: Degree of unsaturation and backbone orientation of amphiphilic macromolecules influence local lipid properties in large unilamellar vesicles. Langmuir 33, 14663 (2017).

    Article  CAS  Google Scholar 

  3. X. Chu, X. Yu, J. Greenstein, F. Aydin, G. Uppaladadium, and M. Dutt: Flow-induced shape reconfiguration, phase separation, and rupture of bio-inspired vesicles. ACS Nano 11, 6661 (2017).

    Article  CAS  Google Scholar 

  4. F. Aydin, G. Uppaladadium, and M. Dutt: The design of shape-tunable hairy vesicles. Colloids Surf. B 128, 268 (2015).

    Article  CAS  Google Scholar 

  5. Z.V. Leonenko, E. Finot, H. Ma, T.E.S. Dahms, and D.T. Cramb: Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Biophys. J. 86, 3783 (2004).

    Article  CAS  Google Scholar 

  6. N. Kucerka, M.P. Nieh, and J. Katsaras: Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta Biomembr. 1808, 2761 (2011).

    Article  CAS  Google Scholar 

  7. V. Vitkova, M. Mader, and T. Podgorski: Deformation of vesicles flowing through capillaries. Europhys. Lett. 68, 398 (2004).

    Article  CAS  Google Scholar 

  8. A. Pommella, N.J. Brooks, J.M. Seddon, and V. Garbin: Selective flow-induced vesicle rupture to sort by membrane mechanical properties. Sci. Rep. 5, 13163 (2015).

    Article  CAS  Google Scholar 

  9. J.L. McWhirter, H. Noguchi, and G. Gompper: Deformation and clustering of red blood cells in microcapillary flows. Soft Matter 7, 10967 (2011).

    Article  CAS  Google Scholar 

  10. R. Fahraeus and T. Lindqvist: The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562 (1931).

    Article  CAS  Google Scholar 

  11. J.L. McWhirter, H. Noguchi, and G. Gompper: Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl. Acad. Sci. USA 106, 6039 (2009).

    Article  CAS  Google Scholar 

  12. J.J. Foo, K.K. Liu, and V. Chan: Thermal effect on a viscously deformed liposome in a laser trap. Ann. Biomed. Eng. 31, 354 (2003).

    Article  Google Scholar 

  13. J.J. Foo, V. Chan, and K.K. Liu: Shape recovery of an optically trapped vesicle: effect of flow velocity and temperature. IEEE Trans. Nanobiosci. 3, 96 (2004).

    Article  Google Scholar 

  14. M. Bertrand and B. Joos: Extrusion of small vesicles through nanochannels: a model for experiments and molecular dynamics simulations. Phys. Rev. E 85, 051910 (2012).

    Article  CAS  Google Scholar 

  15. H. Noguchi and G. Gompper: Fluid vesicles with viscous membranes in shear flow. Phys. Rev. Lett. 93, 258102 (2004).

    Article  CAS  Google Scholar 

  16. H. Noguchi and G. Gompper: Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations. Phys. Rev. E 72, 011901 (2005).

    Article  CAS  Google Scholar 

  17. K.A. Smith and W.E. Uspal: Shear-driven release of a bud from a multicomponent vesicle. J. Chem. Phys. 126, 075102 (2007).

    Article  CAS  Google Scholar 

  18. B. Kaoui, N. Tahiri, T. Biben, H. Ez-Zahraouy, A. Benyoussef, G. Biros, and C. Misbah: Complexity of vesicle microcirculation. Phys. Rev. E 84, 041906 (2011).

    Article  CAS  Google Scholar 

  19. P. Marmottant, T. Biben, and S. Hilgenfeldt: Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles. Proc. R. Soc. A 464, 1781 (2008).

    Article  CAS  Google Scholar 

  20. C. Misbah: Vesicles, capsules and red blood cells under flow. J. Phys. Conf. Ser. 392, 012005 (2012).

    Article  CAS  Google Scholar 

  21. B.S. Lalia, V. Kochkodan, R. Hashaikeh, and N. Hilal: A review on membrane fabrication: structure, properties and performance relationship. Desalination 326, 77 (2013).

    Article  CAS  Google Scholar 

  22. D. Needham and R.S. Nunn: Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys. J. 58, 997 (1990).

    Article  CAS  Google Scholar 

  23. F. Aydin, P. Ludford, and M. Dutt: Phase segregation in bio-inspired multi-component vesicles encompassing double tail phospholipid species. Soft Matter 10, 6096 (2014).

    Article  CAS  Google Scholar 

  24. X.L. Chu, F. Aydin, and M. Dutt: Modeling interactions between multicomponent vesicles and antimicrobial peptide-inspired nanoparticles. ACS Nano 10, 7351 (2016).

    Article  CAS  Google Scholar 

  25. J.R. Silvius: Thermotropic phase transitions of pure lipids in model membranes and their modifications by membrane proteins. Lipid-Protein Interact. 2, 239–281 (1982).

    CAS  Google Scholar 

  26. G.M. Artmann, C. Kelemen, D. Porst, G. Buldt, and S. Chien: Temperature transitions of protein properties in human red blood cells. Biophys. J. 75, 3179 (1998).

    Article  CAS  Google Scholar 

  27. K. Mishima, S. Nakamae, H. Ohshima, and T. Kondo: Curvature elasticity of multilamellar lipid bilayers close to the chain-melting transition. Chem. Phys. Lipids 110, 27 (2001).

    Article  CAS  Google Scholar 

  28. A. Renoncourt, N. Vlachy, P. Bauduin, M. Drechsler, D. Touraud, J.M. Verbavatz, M. Dubois, W. Kunz, and B.W. Ninham: Specific alkali cation effects in the transition from micelles to vesicles through salt addition. Langmuir 23, 2376 (2007).

    Article  CAS  Google Scholar 

  29. A. Laio and M. Parrinello: Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99, 12562 (2002).

    Article  CAS  Google Scholar 

  30. H. Noguchi and G. Gompper: Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl. Acad. Sci. USA 102, 14159 (2005).

    Article  CAS  Google Scholar 

  31. R.D. Groot and P.B. Warren: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423 (1997).

    Article  CAS  Google Scholar 

  32. M. Dutt, O. Kuksenok, M.J. Nayhouse, S.R. Little, and A.C. Balazs: Modeling the self-assembly of lipids and nanotubes in solution: forming vesicles and bicelles with transmembrane nanotube channels. ACS Nano 5, 4769 (2011).

    Article  CAS  Google Scholar 

  33. T. Ye, N. Phan-Thien, and C.T. Lim: Particle-based simulations of red blood cells - a review. J. Biomech. 49, 2255 (2016).

    Article  Google Scholar 

  34. D. Needham and S.N. Rashmi: Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys. J. 58, 997–1009 (1990).

    Article  CAS  Google Scholar 

  35. M. Revenga, I. Zúñiga, and P. Español: Boundary conditions in dissipative particle dynamics. Comput. Phys. Commun. 121-122, 309 (1999).

    Article  Google Scholar 

  36. Z. Li, X. Bian, Y.H. Tang, and G.E. Karniadakis: A dissipative particle dynamics method for arbitrarily complex geometries. J. Comput. Phys. 355, 534 (2018).

    Article  CAS  Google Scholar 

  37. X.J. Li, P.M. Vlahovska, and G.E. Karniadakis: Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9, 28 (2013).

    Article  CAS  Google Scholar 

  38. D. Abreu, M. Levant, V. Steinberg, and U. Seifert: Fluid vesicles in flow. Adv. Colloid Interface Sci. 208, 129 (2014).

    Article  CAS  Google Scholar 

  39. B. Kaoui, G.H. Ristow, I. Cantat, C. Misbah, and W. Zimmermann: Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 77, 021903 (2008).

    Article  CAS  Google Scholar 

  40. W.F. Hu, Y. Kim, and M.C. Lai: An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier-Stokes flows. J. Comput. Phys. 257, 670 (2014).

    Article  Google Scholar 

  41. D.A. Fedosov, M. Peltomaki, and G. Gompper: Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10, 4258 (2014).

    Article  CAS  Google Scholar 

  42. T. Biben and C. Misbah: Tumbling of vesicles under shear flow within an advected-field approach. Phys. Rev. E 67, 031908 (2003).

    Article  CAS  Google Scholar 

  43. J. Beaucourt, F. Rioual, T. Seon, T. Biben, and C. Misbah: Steady to unsteady dynamics of a vesicle in a flow. Phys. Rev. E 69, 011906 (2004).

    Article  CAS  Google Scholar 

  44. B. Kaoui and J. Harting: Two-dimensional lattice Boltzmann simulations of vesicles with viscosity contrast. Rheol. Acta 55, 465–475 (2016).

    Article  CAS  Google Scholar 

  45. H.B. Li, H.H. Yi, X.W. Shan, and H.P. Fang: Shape changes and motion of a vesicle in a fluid using a lattice Boltzmann model. EPL 81, 54002 (2008).

    Article  CAS  Google Scholar 

  46. D. Abreu: Vesicles in flow: role of thermal fluctuations. PhD thesis, University of Stuttgart, 2014.

    Google Scholar 

  47. D.A. Fedosov, M. Dao, G.E. Karniadakis, and S. Suresh: Computational biorheology of human blood flow in health and disease. Ann. Biomed. Eng. 42, 368 (2014).

    Article  Google Scholar 

  48. F.M. Goni: The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochim. Biophys. Acta 1838, 1467 (2014).

    Article  CAS  Google Scholar 

  49. Y.Q. Zhu, B. Yang, S. Chen, and J.Z. Du: Polymer vesicles: mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci. 64, 1 (2017).

    Article  CAS  Google Scholar 

  50. S. Vauthey, S. Santoso, H. Gong, N. Watson, and S. Zhang: Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA 99, 5355 (2002).

    Article  CAS  Google Scholar 

  51. P. Ahlrichs and B. Dunweg: Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J. Chem. Phys. 111, 8225 (1999).

    Article  CAS  Google Scholar 

  52. V. Lobaskin and B. Dunweg: A new model for simulating colloidal dynamics. New J. Phys. 6, 54 (2004).

    Article  Google Scholar 

  53. S.T. Ollila, C. Denniston, M. Karttunen, and T. Ala-Nissila: Fluctuating lattice-Boltzmann model for complex fluids. J. Chem. Phys. 134, 064902 (2011).

    Article  CAS  Google Scholar 

  54. R. Adhikari, K. Stratford, M.E. Cates, and A.J. Wagner: Fluctuating lattice Boltzmann. EPL 71, 473 (2005).

    Article  CAS  Google Scholar 

  55. F.E. Mackay, S.T.T. Ollila, and C. Denniston: Hydrodynamic forces implemented into LAMMPS through a lattice-Boltzmann fluid. Comput. Phys. Commun. 184, 2021 (2013).

    Article  CAS  Google Scholar 

  56. F.E. Mackay and C. Denniston: Coupling MD particles to a lattice-Boltzmann fluid through the use of conservative forces. J. Comput. Phys. 237, 289 (2013).

    Article  Google Scholar 

  57. A.J.C. Ladd: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285 (2006).

    Article  Google Scholar 

  58. T.T. Pham, U.D. Schiller, J.R. Prakash, and B. Dunweg: Implicit and explicit solvent models for the simulation of a single polymer chain in solution: lattice Boltzmann versus Brownian dynamics. J. Chem. Phys. 131, 164114 (2009).

    Article  CAS  Google Scholar 

  59. A. Chatterji and J. Horbach: Electrophoretic properties of highly charged colloids: a hybrid molecular dynamics/lattice Boltzmann simulation study. J. Chem. Phys. 126, 064907 (2007).

    Article  CAS  Google Scholar 

  60. T. Ando and J. Skolnick: On the importance of hydrodynamic interactions in lipid membrane formation. Biophys. J. 104, 96 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Xiang Yu and Geetartha Uppaladadium for their contributions to Ref. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Dutt.

Additional information

Equally contributing co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, F., Chu, X., Greenstein, J. et al. A review on phospholipid vesicles flowing through channels. MRS Communications 8, 718–726 (2018). https://doi.org/10.1557/mrc.2018.118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.118

Navigation