Skip to main content
Log in

Dislocation dynamics study of precipitate hardening in Al-Mg-Si alloys with input from experimental characterization

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Partial aging of AA6060 aluminum alloys is known to result in a microstructure characterized by needle-shaped Si/Mg-rich precipitates. These precipitates belong to the non-equilibrium β″ phase and are coherent with the face-centered cubic Al lattice, despite of which they can cause considerable hardening. We have investigated the interaction between these β″ precipitates and dislocations using a unique combination of modeling and experimental observations. Dislocation-precipitate interactions are simulated using dislocation dynamics (DD) parameterized with atomistic simulations. The elastic fields due to the precipitates are described by a decay law fitted to high-resolution transmission electron microscopy measurements. These fields are subsequently used in DD to study the strength of individual precipitates as a function of size and dislocation character. Our results can be used to parameterize crystal plasticity models to calculate the strength of AA6060 at the macroscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Table I
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. G.A. Edwards, K. Stiller, G. Dunlop, and M.J. Couper: The composition of fine-scale precipitates in Al–Mg–Si alloys. Mater. Sci. Forum 217, 713–718 (1996).

    Article  Google Scholar 

  2. K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno: Precipitation sequence of various kinds of metastable phases in Al-1.0 mass% Mg2Si-0.4 mass% Si alloy. J. Mater. Sci. 35, 179–189 (2000).

    Article  CAS  Google Scholar 

  3. S.J. Andersen, C.D. Marioara, A. Frøseth, R. Vissers, and H.W. Zandbergen: Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β′ and β″ phases. Mater. Sci. Eng. A 390, 127–138 (2005).

    Article  Google Scholar 

  4. H.W. Zandbergen, S.J. Andersen, and J. Jansen: Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science 277, 1221–1225 (1997).

    Article  CAS  Google Scholar 

  5. C.D. Marioara, H. Nordmark, S.J. Andersen, and R. Holmestad: Post-β″phases and their influence on microstructure and hardness in 6xxx Al–Mg–Si alloys. J. Mater. Sci. 41, 471–478 (2006).

    Article  CAS  Google Scholar 

  6. H.S. Hasting, A.G. Frøseth, S.J. Andersen, R. Vissers, J.C. Walmsley, C.D. Marioara and R. Holmestad: Composition of β″ precipitates in Al–Mg–Si alloys by atom probe tomography and first principles calculations. J. Appl. Phys. 106, 123527 (2009).

    Article  Google Scholar 

  7. S. Wenner, L. Jones, C.D. Marioara and R. Holmestad: Atomic-resolution chemical mapping of ordered precipitates in Al alloys using energy-dispersive X-ray spectroscopy. Micron 96, 103–111 (2017).

    Article  CAS  Google Scholar 

  8. D. Chakrabarti and D.E. Laughlin: Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog. Mater. Sci. 49, 389–410 (2004).

    Article  CAS  Google Scholar 

  9. M.F. Ashby: On the Orowan stress (MIT Press, Cambridge, MA, 1969).

    Google Scholar 

  10. F.J.H. Ehlers, S. Dumoulin and R. Holmestad: 3D modelling of β″in Al–Mg–Si: towards an atomistic level ab initio based examination of a full precipitate enclosed in a host lattice, Comput. Mater. Sci. 91, 200–210 (2014).

    Article  CAS  Google Scholar 

  11. A.J. Ardell: Precipitation hardening. Metall. Trans. A 16, 2131–2165 (1985).

    Article  Google Scholar 

  12. Y.N. Osetsky and D.J. Bacon: Atomic-level level dislocation dynamics in irradiated metals. Comprehens. Nucl. Mater. 1, 1–23 (2012).

    Google Scholar 

  13. L. Proville and B. Bako: Dislocation depinning from ordered nanophases in a model fcc crystal: from cutting mechanism to Orowan looping. Acta Mater. 58, 5565–5571 (2010).

    Article  CAS  Google Scholar 

  14. S. Queyreau, G. Monnet, and B. Devincre: Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 58, 5586–5595 (2010).

    Article  CAS  Google Scholar 

  15. G. Monnet, S. Naamane, and B. Devincre: Orowan strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations. Acta Mater. 59, 451–461 (2011).

    Article  CAS  Google Scholar 

  16. A. Lehtinen, F. Granberg, L. Laurson, K. Nordlund, and M.J. Alava: Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations. Phys. Rev. E 93, 1–9, 013309 (2016).

    Article  Google Scholar 

  17. A. Keyhani, R. Roumina, and S. Mohammadi: An efficient computational technique for modeling dislocation–precipitate interactions within dislocation dynamics. Comput. Mater. Sci. 122, 281–287 (2016).

    Article  CAS  Google Scholar 

  18. C.-S. Han, R.H. Wagoner, and F. Barlat: On precipitate induced hardening in crystal plasticity: theory. Int. J. Plast. 20, 477–494 (2004).

    Article  Google Scholar 

  19. J.D. Eshelby: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 241. No. 1226, 376–396 (1957).

    Article  Google Scholar 

  20. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce and V.V. Bulatov: Enabling strain hardening simulations with dislocation dynamics. Model. Simul. Mater. Sci. Eng. 15, 553 (2007).

    Article  Google Scholar 

  21. E. Martinez, J. Marian, A. Arsenlis, M. Victoria, and J.M. Perlado: Atomistically informed dislocation dynamics in fcc crystals. J. Mech. Phys. Solids 56, 869–895 (2008).

    Article  CAS  Google Scholar 

  22. E.A. Mørtsell, C.D. Marioara, S.J. Andersen, J. Røyset, O. Reiso, and R. Holmestad: Effects of germanium, copper, and silver substitutions on hardness and microstructure in lean Al–Mg–Si alloys. Metall. Mater. Trans. A 46, 4369–4379 (2015).

    Article  Google Scholar 

  23. S. Wenner and R. Holmestad: Accurately measured precipitate–matrix misfit in an Al–Mg–Si alloy by electron microscopy. Scr. Mater. 118, 5–8 (2016).

    Article  CAS  Google Scholar 

  24. M. Hÿtch, E. Snoeck, and R. Kilaas: Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  25. J. Marian, E. Martinez, H.J. Lee, B.D. Wirth: Micro/meso-scale computational study of dislocation-stacking-fault tetrahedron interactions in copper. J. Mater. Res. 24, 3628–3635 (2009).

    Article  CAS  Google Scholar 

  26. P.H. Ninive: Towards a complete description of aluminium from atomistic modeling. A parameter-free study of hardening precipitates in Al alloys. PhD thesis, Faculty of Mathematics and Natural Sciences, University of Oslo (2015).

    Google Scholar 

  27. X.-Y. Liu, F. Ercolessi and J.B. Adams: Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy. Model. Simul. Mater. Sci. Eng. 12, 665 (2004).

    Article  CAS  Google Scholar 

  28. D.L. Olmsted, L.G. Hector Jr., W.A. Curtin, and R.J. Clifton: Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model. Simul. Mater. Sci. Eng. 13, 371 (2005).

    Article  CAS  Google Scholar 

  29. D. Bacon, U. Kocks, and R. Scattergood: The effect of dislocation self-interaction on the Orowan stress. Philos. Mag. 28, 1241–1263 (1973).

    Article  Google Scholar 

  30. X. Han, N.M. Ghoniem, Z. Wang: Parametric dislocation dynamics of anisotropic crystals. Philos. Mag. 83, 3705–3721 (2003).

    Article  CAS  Google Scholar 

  31. N.A. Ghoniem, S.H. Tong, L.Z. Sun: Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys. Rev. B 61, 913 (2000).

    Article  CAS  Google Scholar 

  32. C.S. Shin, M.C. Fivel, M. Verdier and K.H. Oh: Dislocation–impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis. Philos. Mag. 83, 3691–3704 (2003).

    Article  CAS  Google Scholar 

  33. J. Tersoff: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566 (1989).

    Article  CAS  Google Scholar 

  34. D.J. O’Connor, J.P. Biersack: Comparison of theoretical and empirical interatomic potentials. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 15, 14–19 (1986).

    Article  Google Scholar 

  35. D. Cereceda, M. Diehl, F. Roters, D. Raabe, J.M. Perlado, J. Marian: Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. Int. J. Plast. 78, 242–265 (2016).

    Article  CAS  Google Scholar 

  36. B.G. Clark, I.M. Robertson, L.M. Dougherty, D.C. Ahn, P. Sofronis: High-temperature dislocation-precipitate interactions in Al alloys: an in situ transmission electron microscopy deformation study. J. Mater. Res. 20, 1792–1801 (2005).

    Article  CAS  Google Scholar 

  37. K. Nogiwa, T. Yamamoto, K. Fukumoto, H. Matsui, Y. Nagai, K. Yubuta, M. Hasegawa: In situ TEM observation of dislocation movement through the ultrafine obstacles in an Fe alloy. J. Nucl. Mater. 307, 946–950 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Ringdalen.

Supplementary information

Supplementary Materials

Supplementary Materials

The supplementary material for this article can be found at: https://doi.org/10.1557/mrc.2017.78

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ringdalen, I., Wenner, S., Friis, J. et al. Dislocation dynamics study of precipitate hardening in Al-Mg-Si alloys with input from experimental characterization. MRS Communications 7, 626–633 (2017). https://doi.org/10.1557/mrc.2017.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.78

Navigation