Skip to main content
Log in

On-the-fly segmentation approaches for x-ray diffraction datasets for metallic glasses

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. On-the-fly segmentation would, therefore, result in accelerated scientific productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. T.L. Blundell and S. Patel: High-throughput X-ray crystallography for drug discovery. Curr. Opin. Pharmacol. 4, 490–496 (2004).

    Article  CAS  Google Scholar 

  2. M. Tanaka, Y. Katsuya, and A. Yamamoto: A new large radius imaging plate camera for high-resolution and high-throughput synchrotron x-ray powder diffraction by multiexposure method. Rev. Sci. Instrum. 79, 075106 (2008).

    Article  Google Scholar 

  3. J.M. Gregoire, D. Dale, A. Kazimirov, F.J. DiSalvo, and R.B. van Dover: High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev. Sci. Instrum. 80, 123905 (2009).

    Article  Google Scholar 

  4. J.M. Gregoire, D.G. Van Campen, C.E. Miller, R.J.R. Jones, S.K. Suram, and A. Mehta: High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. J. Synchrotron Radiat. 21, 1262–1268 (2014).

    Article  CAS  Google Scholar 

  5. S.K. Suram, P.F. Newhous, L. Zhou, D.G. Van Campen, A. Mehta, and J.M. Gregoire: High throughput light absorber discovery. Part 2. Establishing structure-band gap energy relationships. ACS Comb. Sci. 18, 682–688 (2016).

    Article  CAS  Google Scholar 

  6. Y.P. Deng, Y. Guan, J.D. Fowkes, S.Q. Wen, F.X. Liu, G.M. Phaff, P.K. Liaw, C.T. Liu, and P.D. Rack: A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses. Intermetallics 15, 1208–1216 (2007).

    Article  CAS  Google Scholar 

  7. M.L. Green, I. Takeuchi, and J.R. Hattrick-Simpers: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101 (2013).

    Article  Google Scholar 

  8. S.Y. Ding, Y.H. Liu, Y.L. Li, Z. Liu, S. Sohn, F.J. Walker, and J. Schroers: Combinatorial development of bulk metallic glasses. Nat. Mater. 13, 494–500 (2014).

    Article  CAS  Google Scholar 

  9. M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, and R.O. Ritchie: A damage-tolerant glass. Nat. Mater. 10, 123–128 (2011).

    Article  CAS  Google Scholar 

  10. Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, and W.H. Wang: Super plastic bulk metallic glasses at room temperature. Science 315, 1385–1388 (2007).

    Article  CAS  Google Scholar 

  11. J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, and C. Rullyani: Thin film metallic glasses: unique properties and potential applications. Thin Solid Films 520, 5097–5122 (2012).

    Article  CAS  Google Scholar 

  12. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

    Article  CAS  Google Scholar 

  13. D.B. Miracle: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 1142–1147 (2015).

    Article  CAS  Google Scholar 

  14. W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45–89 (2004).

    Article  Google Scholar 

  15. M.H. Tsai and J.W. Yeh: High-entropy alloys: a critical review. Mater. Res. Lett. 2, 107–123 (2014).

    Article  Google Scholar 

  16. X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233–238 (2012).

    Article  CAS  Google Scholar 

  17. E. Perim, D. Lee, Y.H. Liu, C. Toher, P. Gong, Y.L. Li, W.N. Simmons, O. Levy, J.J. Vlassak, J. Schroers, and S. Curtarolo: Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat. Commun. 7, 12315 (2016).

    Article  CAS  Google Scholar 

  18. K.J. Laws, D.B. Miracle, and M. Ferry: A predictive structural model for bulk metallic glasses. Nat. Commun. 6, 8123 (2015).

    Article  CAS  Google Scholar 

  19. K. Zhang, B. Dice, Y.H. Liu, J. Schroers, M.D. Shattuck, and C.S. O’Hern: On the origin of multi-component bulk metallic glasses: atomic size mismatches and de-mixing. J. Chem. Phys. 143, 054501 (2015).

    Article  Google Scholar 

  20. F. Ren, R. Pandolfi, D. Van Campen, A. Hexemer, and A. Mehta: On-the-fly data assessment for high throughput X-ray diffraction measurement. ACS Comb. Sci. 19, 377–385 (2017).

    Article  CAS  Google Scholar 

  21. M.R. Linford: The Gaussian-Lorentzian sum, product, and convolution (Voigt) functions used in peak fitting XPS narrow scans, and an introduction to the impulse function. Vacuum Technology & Coating (July 2014), pp. 2–9.

    Google Scholar 

  22. A.L. Patterson: The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978–982 (1939).

    Article  CAS  Google Scholar 

  23. Y. Iwasaki, A.G. Kusne, and I. Takeuchi: Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries. NPJ Comput. Mater. 3, 4 (2017).

    Article  Google Scholar 

  24. A.G. Kusne, T.R. Gao, A. Mehta, L.Q. Ke, M.C. Nguyen, K.M. Ho, V. Antropov, C.Z. Wang, M.J. Kramer, C. Long, and I. Takeuchi: On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci. Rep. 4, 6367 (2014).

    Article  Google Scholar 

  25. A.G. Kusne, D. Keller, A. Anderson, A. Zaban, and I. Takeuchi: High-throughput determination of structural phase diagram and constituent phases using GRENDEL. Nanotechnology 26, 444002 (2015).

    Article  CAS  Google Scholar 

  26. H.S. Stein, S. Jiao, and A. Ludwig: Expediting combinatorial data set analysis by combining human and algorithmic analysis. ACS Comb. Sci. 19, 1–8 (2017).

    Article  CAS  Google Scholar 

  27. S.K. Suram, Y.X. Xue, J.W. Bai, R. Le Bras, B. Rappazzo, R. Bernstein, J. Bjorck, L. Zhou, R.B. van Dover, C.P. Gomes, and J.M. Gregoire: Automated phase mapping with AgileFD and its application to light absorber discovery in the V–Mn–Nb oxide system. ACS Comb. Sci. 19, 37–46 (2017).

    Article  CAS  Google Scholar 

  28. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  29. D. Hunter, W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, R. Takahashi, M.L. Young, A. Mehta, L.A. Bendersky, S.E. Lofland, M. Wuttig, and I. Takeuchi: Giant magnetostriction in annealed Co1-xFex thin-films. Nat. Commun. 2, 518 (2011).

    Article  Google Scholar 

  30. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: Commentary: the materials project: a materials genome approach to accelerating materials innovation. Apl. Mater. 1, 011002 (2013).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Advanced Manufacturing Office of the Department of Energy under FWP-100250. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. T. Williams was supported by NSF IGERT Grant #1250052. The authors thank D. Van Campen and T. Dunn for their support when collecting XRD data at SSRL Beamline1-5. The authors would like to thank the South Carolina Center of Economic Excellence for Strategic Approaches to the Generation of Electricity for support in sample synthesis. The authors acknowledge 2016 Machine Learning for Materials Research Workshop sponsored by NIST and University of Maryland for the introduction on unsupervised machine learning. The authors also thank D. Schneider for recommending cluster analysis methods for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Ren or Apurva Mehta.

Additional information

These authors contributed equally to this work.

Supplementary Materials

Supplementary Materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.76

All the data are organized database and uploaded to Citrine.io (https://citrination.com/datasets/153238/show_search) and Materials website at NIST (http://hdl.handle.net/11256/945). The source code used to generate all the plots can be downloaded at https://github.com/fang-ren/Unsupervised_data_analysis_CoFeZr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Williams, T., Hattrick-Simpers, J. et al. On-the-fly segmentation approaches for x-ray diffraction datasets for metallic glasses. MRS Communications 7, 613–620 (2017). https://doi.org/10.1557/mrc.2017.76

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.76

Navigation