Skip to main content
Log in

Morphological stability during electrodeposition

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The uniform electrodeposition of certain materials, such as Li metal, remains elusive because the mechanisms controlling growth instability are not fully understood. To determine the conditions that lead to either stable or unstable deposition, we develop a phase-field model for the growth of multiple deposits in a binary electrolyte and examine the behavior as the kinetic parameters are varied. We find that the second Damköhler number, defined as the ratio between the reaction and the mass transfer fluxes, is an indicator of deposition instability. Our results suggest that controlling reaction kinetics and initial roughness are essential in achieving stable electrodeposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Y.D. Gamburg and G. Zangari: Theory and Practice of Metal Electrodeposition. (Springer, New York, 2011).

    Book  Google Scholar 

  2. J.L. Barton and J.O. Bockris: The electrolytic growth of dendrites from ionic solutions. Proc. R. Soc. A Math. Phys. Eng. Sci. 268, 485–;505 (1962).

    CAS  Google Scholar 

  3. C. Monroe and J. Newman: Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377 (2003).

    Article  CAS  Google Scholar 

  4. R. Akolkar: Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J. Power Sources 246, 84–;89 (2014).

    Article  CAS  Google Scholar 

  5. F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu and J.-G. Zhang: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–;4456 (2013).

    Article  CAS  Google Scholar 

  6. N. Goldenfeld: Dynamics of dendritic growth. J. Power Sources 26, 121–;128 (1989).

    Article  CAS  Google Scholar 

  7. L.-G. Sundström and F.H. Bark: On morphological instability during electrodeposition with a stagnant binary electrolyte. Electrochim. Acta 40, 599–;614 (1995).

    Article  Google Scholar 

  8. S. DeWitt, N. Hahn, K. Zavadil and K. Thornton: Computational examination of orientation-dependent morphological evolution during the electrodeposition and electrodissolution of magnesium. J. Electrochem. Soc. 163, A513–;A521 (2015).

    Article  Google Scholar 

  9. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J.-G. Zhang: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–;537 (2014).

    Article  CAS  Google Scholar 

  10. Y. Okajima, Y. Shibuta and T. Suzuki: A phase-field model for electrode reactions with Butler-;Volmer kinetics. Comput. Mater. Sci. 50, 118–;124 (2010).

    Article  CAS  Google Scholar 

  11. L. Liang and L.-Q. Chen: Nonlinear phase field model for electrodeposition in electrochemical systems. Appl. Phys. Lett. 105, 263903 (2014).

    Article  Google Scholar 

  12. D.R. Ely, A. Jana and R.E. García: Phase field kinetics of lithium electrodeposits. J. Power Sources 272, 581–;594 (2014).

    Article  CAS  Google Scholar 

  13. B. Orvananos, T.R. Ferguson, H.-C. Yu, M.Z. Bazant and K. Thornton: Particle-level modeling of the charge-;discharge behavior of nanoparticulate phase-separating Li-ion battery electrodes. J. Electrochem. Soc. 161, A535–;A546 (2014).

    Article  CAS  Google Scholar 

  14. N. Moelans, B. Blanpain and P. Wollants: Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems. Phys. Rev. B 78, 24113 (2008).

    Article  Google Scholar 

  15. J.W. Cahn and J.E. Hilliard: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–;267 (1958).

    Article  CAS  Google Scholar 

  16. S.M. Allen and J.W. Cahn: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–;1095 (1979).

    Article  CAS  Google Scholar 

  17. J.N. Chazalviel: Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–;7367 (1990).

    Article  CAS  Google Scholar 

  18. C. P. Nielsen and H. Bruus: Morphological instability during steady electrodeposition at overlimiting currents. Phys. Rev. E 92, 052310 (2015).

    Article  Google Scholar 

  19. H.-C. Yu, H.-Y. Chen and K. Thornton: Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries. Model. Simul. Mater. Sci. Eng. 20, 75008 (2012).

    Article  Google Scholar 

  20. H.S. Fogler: Elements of Chemical Reaction Engineering (Prentice Hall, Upper Saddle River, NJ, 2006).

    Google Scholar 

  21. S.-I. Lee, U.-H. Jung, Y.-S. Kim, M.-H. Kim, D.-J. Ahn and H.-S. Chun: A study of electrochemical kinetics of lithium ion in organic electrolytes. Korean J. Chem. Eng. 19, 638–;644 (2002).

    Article  CAS  Google Scholar 

  22. S.J. Banik and R. Akolkar: Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive. J. Electrochem. Soc. 160, D519–;D523 (2013).

    Article  CAS  Google Scholar 

  23. C. Wagner: Theoretical analysis of the current density distribution in electrolytic cells. J. Electrochem. Soc. 98, 116 (1951).

    Article  CAS  Google Scholar 

  24. A. Arneodo, F. Argoul, Y. Couder and M. Rabaud: Anisotropic Laplacian growths: from diffusion-limited aggregates to dendritic fractals. Phys. Rev. Lett. 66, 2332–;2335 (1991).

    Article  CAS  Google Scholar 

  25. O. Crowther and A.C. West: Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806 (2008).

    Article  CAS  Google Scholar 

  26. Y. Zhang, J. Qian, W. Xu, S.M. Russell, X. Chen, E. Nasybulin, P. Bhattacharya, M.H. Engelhard, D. Mei, R. Cao, F. Ding, A.V. Cresce, K. Xu and J.-G. Zhang: Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14, 6889–;6896 (2014).

    Article  CAS  Google Scholar 

  27. B.L. Mehdi, J. Qian, E. Nasybulin, C. Park, D.A. Welch, R. Faller, H. Mehta, W.A. Henderson, W. Xu, C.M. Wang, J.E. Evans, J. Liu, J.-G. Zhang, K.T. Mueller and N.D. Browning: Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015).

    Article  CAS  Google Scholar 

  28. A.J. Leenheer, K.L. Jungjohann, K.R. Zavadil, J.P. Sullivan and C.T. Harris: Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9, 4379–;4389 (2015).

    Article  CAS  Google Scholar 

  29. D.A. Cogswell: Quantitative phase-field modeling of dendritic electrodeposition. Phys. Rev. E 92, 11301 (2015).

    Article  Google Scholar 

  30. J. Steiger, D. Kramer and R. Mönig: Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112–;119 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank H.-C. Yu for critical reading of the manuscript. This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Additionally, this research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuyo Thornton.

Suplemental Materials

Supplementary Materials

Supplementary Materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.38

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enrique, R.A., DeWitt, S. & Thornton, K. Morphological stability during electrodeposition. MRS Communications 7, 658–663 (2017). https://doi.org/10.1557/mrc.2017.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.38

Navigation