Skip to main content
Log in

PEDOT:PSS microelectrode arrays for hippocampal cell culture electrophysiological recordings

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In vitro electrophysiology using microelectrode arrays (MEAs) plays an important role in understanding fundamental biologic processes, screening potential drugs and assessing the toxicity of chemicals. Low electrode impedance and ability to sustain viable cultures are the key technology requirements. We show that MEAs consisting of poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) and coated with poly-L-lysine satisfy these requirements. Hippocampal cell cultures, maintained for 3–6 weeks on these MEAs, give high quality recordings of neural activity. This enables the observation of drug-induced activity changes, which paves the way for using these devices in in vitro drug screening and toxicology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. J. Pine: Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Methods 2, 19 (1980).

    Article  CAS  Google Scholar 

  2. Y. Nam and B.C. Wheeler: In vitro microelectrode array technology and neural recordings. Crit. Rev. Biomed. Eng. 39, 45 (2011).

    Article  Google Scholar 

  3. E.M. Steidl, E. Neveu, D. Bertrand, and B. Buisson: The adult rat hippo-campal slice revisited with multi-electrode arrays. Brain Res. 1096, 70 (2006).

    Article  CAS  Google Scholar 

  4. M. Sessolo, D. Khodagholy, J. Rivnay, F. Maddalena, M. Gleyzes, E. Steidl, B. Buisson, and G.G. Malliaras: Easy-to-Fabricate conducting polymer microelectrode arrays. Adv. Mater. 25, 2135 (2013).

    Article  CAS  Google Scholar 

  5. F.J. Arnold, F. Hofmann, C.P. Bengtson, M. Wittmann, P. Vanhoutte, and H. Bading: Microelectrode array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis-dependent plasticity. J. Physiol. 564, 3 (2005).

    Article  CAS  Google Scholar 

  6. T.T. Kanagasabapathi, P. Massobrio, R.A. Barone, M. Tedesco, S. Martinoia, W.J. Wadman, and M.M. Decre: Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device. J Neural Eng 9, 036010 (2012).

    Article  Google Scholar 

  7. V.Y. Soldatow, E.L. LeCluyse, L.G. Griffith, and I. Rusyn: In vitro models for liver toxicity testing. Toxicol. Res. 2, 23 (2013).

    Article  CAS  Google Scholar 

  8. J. Rivnay, R.M. Owens, and G.G. Malliaras: The rise of organic bioelec-tronics. Chem. Mater. 26, 679 (2014).

    Article  CAS  Google Scholar 

  9. G. Buzsaki, C.A. Anastassiou, and C. Koch: The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407 (2012).

    Article  CAS  Google Scholar 

  10. K.A. Ludwig, N.B. Langhals, M.D. Joseph, S.M. Richardson-Burns, J.L. Hendricks, and D.R. Kipke: Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J. Neural. Eng. 8, 014001 (2011).

    Article  Google Scholar 

  11. Y. Nam, B.C. Wheeler, and M.O. Heuschkel: Neural recording and stimulation of dissociated hippocampal cultures using microfabricated three-dimensional tip electrode array. J. Neurosci. Methods 155, 296 (2006).

    Article  Google Scholar 

  12. M. Geissler and A. Faissner: A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays. J. Neurosci. Methods 204, 262 (2012).

    Article  Google Scholar 

  13. Z. Yang, Q. Zhao, E. Keefer, and W. Liu: Noise Characterization, Modeling, and Reduction for In Vivo Neural Recordin, edited by Y. Bengio, D. Schuurmans, J. Lafferty, C.K.I. Williams and A. Culotta (NIPs Proc. 22, Vancouver, BC, Canada, 2009), p. 2160.

  14. K.A. Ludwig, J.D. Uram, J. Yang, D.C. Martin, and D.R. Kipke: Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural. Eng. 3, 59 (2006).

    Article  Google Scholar 

  15. G.T.A. Kovacs: Introduction to the theory, design and modeling of thin-film microelectrodes for neural interfaces. In Enabling Technologies for Cultured Neural Networks, edited by D.A. Stenger and T.M. McKenna (Academic Press, London, 1994), p. 121.

    Google Scholar 

  16. M. Berggren and A. Richter-Dahlfors: Organic bioelectronics. Adv. Mater. 19, 3201 (2007).

    Article  CAS  Google Scholar 

  17. R. Green and M.R. Abidian: Conducting polymers for neural prosthetic and neural interface applications. Adv. Mater. 27, 7620 (2015).

    Article  CAS  Google Scholar 

  18. D.C. Martin and G.G. Malliaras: Interfacing electronic and ionic charge transport in bioelectronics. ChemElectroChem 3, 686 (2016).

    Article  CAS  Google Scholar 

  19. C.M. Proctor, J. Rivnay, and G.G. Malliaras: Understanding volumetric capacitance in conducting polymers. J.Polym. Sci. Part B:Polym. Phys. 54, 1433 (2016).

    Article  CAS  Google Scholar 

  20. T. Nyberg, A. Shimada, and K. Torimitsu: Ion conducting polymer micro-electrodes for interfacing with neural networks. J. Neurosci. Methods 160, 16 (2007).

    Article  CAS  Google Scholar 

  21. A. Blau, A. Murr, S. Wolff, E. Sernagor, P. Medini, G. Iurilli, C. Ziegler, and F. Benfenati: Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials 32, 1778 (2011).

    Article  CAS  Google Scholar 

  22. S.M. Richardson-Burns, J.L. Hendricks, B. Foster, L.K. Povlich, D.-H. Kim, and D.C. Martin: Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28, 1539 (2007).

    Article  CAS  Google Scholar 

  23. X. Cui, V.A. Lee, Y. Raphael, J.A. Wiler, J.F. Hetke, D.J. Anderson, and D.C. Martin: Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J.Biomed. Mater. Res. 56, 261 (2001).

    Article  CAS  Google Scholar 

  24. R.T. Richardson, B. Thompson, S. Moulton, C. Newbold, M.G. Lum, A. Cameron, G. Wallace, R. Kapsa, G. Clark, and S. O’Leary: The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neu-rite outgrowth from auditory neurons. Biomaterials 28, 513 (2007).

    Article  CAS  Google Scholar 

  25. R.A. Green, R.T. Hassarati, L. Bouchinet, C.S. Lee, G.L. Cheong, J.F. Yu, C.W. Dodds, G.J. Suaning, L.A. Poole-Warren, and N.H. Lovell: Substrate dependent stability of conducting polymer coatings on medical electrodes. Biomaterials 33, 5875 (2012).

    Article  CAS  Google Scholar 

  26. M.R. Abidian, J.M. Corey, D.R. Kipke, and D.C. Martin: Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 6, 421 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Marie Curie initial training network OLIMPIA for the financial support. The MEAs were fabricated at the Centre Microélectronique de Provence (Gardanne, France) clean room facilities while the cell culturing (B.H. and C.F.) and the electrophysiology (E.D.) measurements were performed at MyEnterix laboratories in Aix-Marseille University, CNRS, CRN2M, Marseille, France. The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George G. Malliaras.

Additional information

This author was an editor of this journal during the review and decision stage. For the MRC policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary material

Supplementary Material

Supplementary Material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.34

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutsouras, D.A., Hama, A., Pas, J. et al. PEDOT:PSS microelectrode arrays for hippocampal cell culture electrophysiological recordings. MRS Communications 7, 259–265 (2017). https://doi.org/10.1557/mrc.2017.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.34

Navigation