Skip to main content
Log in

A patterned polystyrene-based microelectrode array for in vitro neuronal recordings

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Substrate-integrated microelectrode arrays (MEAs) are non-invasive platforms for recording supra-threshold signals, i.e. action potentials or spikes, from a variety of cultured electrically active cells, and are useful for pharmacological and toxicological studies. However, the MEA substrate, which is often fabricated using semiconductor processing technology, presents some challenges to the user. Specifically, the electrode encapsulation, which may consist of a variety of inorganic and organic materials, requires a specific substrate preparation protocol to optimize cell adhesion to the surface. Often, these protocols differ from and are more complex than traditional protocols for in vitro cell culture in polystyrene petri dishes. Here, we describe the fabrication of an MEA with indium tin oxide microelectrodes and a patterned polystyrene electrode encapsulation. We demonstrate the electrochemical stability of the electrodes and encapsulation, and show viable cell culture and in vitro recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • E. Berthier, E.W.K. Young, D. Beebe, Engineers are from PDMS-land, biologists are from polystyrenia. Lab. Chip. 12(7), 1224–1237 (2012)

    Article  Google Scholar 

  • J.C. Chang, G.J. Brewer, B.C. Wheeler, Microelectrode array recordings of patterned hippocampal neurons for four weeks. Biomed. Microdevices. 2(4), 245–253 (2000)

    Article  Google Scholar 

  • H. Charkhkar et al., Use of cortical neuronal networks for in vitro material biocompatibility testing. Biosens. Bioelectron. 53(15), 316–323 (2014)

    Article  Google Scholar 

  • H. Charkhkar et al., Amyloid beta modulation of neuronal network activity in vitro. Brain. Res. 1629, 1–9 (2015)

    Article  Google Scholar 

  • H. Charkhkar et al., Novel disposable microelectrode array for cultured neuronal network recording exhibiting equivalent performance to commercially available arrays. Sensors. Actuators B. Chem. 226, 232–238 (2016)

    Article  Google Scholar 

  • C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, et al., Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17(8), 1015–1019 (2011)

    Article  Google Scholar 

  • P. Connolly, P. Clark, A.S.G. Curtis, J.A.T. Dow, C.D.W. Wilkinson, An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens. Bioelectron. 5(3), 223–234 (1990)

    Article  Google Scholar 

  • A. Gramowski, K. Jügelt, D.G. Weiss, G.W. Gross, Substance identification by quantitative characterization of oscillatory activity in murine spinal cord networks on microelectrode arrays. Eur. J. Neurosci. 19(10), 2815–2825 (2004)

    Article  Google Scholar 

  • S.M. Grist, N. Oyunerdene, J. Flueckiger, J. Kim, P.C. Wong, L. Chrostowski, K.C. Cheung, Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications. Analyst. 139(22), 5718–5727 (2014)

    Article  Google Scholar 

  • G.W. Gross, E. Rieske, G.W. Kreutzberg, A. Meyer, A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci. Lett. 6(2), 101–105 (1977)

    Article  Google Scholar 

  • F.M. Hasan, Y. Berdichevsky, Neural circuits on a chip. Micromachines. 7(9), 1 (2016)

    Article  Google Scholar 

  • A.F.M. Johnstone, G.W. Gross, D.G. Weiss, O.H.U. Schroeder, A. Gramowski, T.J. Shafer, Microelectrode arrays: A physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology. 31(4), 331–350 (2010)

    Article  Google Scholar 

  • G. Kang, J. Lee, C. Lee, Y. Nam, Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing. Lab. Chip. 9(22), 3236 (2009)

    Article  Google Scholar 

  • G.L. Knaack, H. Charkhkar, F.W. Hamilton, N. Peixoto, T.J. O'Shaughnessy, J.J. Pancrazio, Differential responses to ω-agatoxin IVA in murine frontal cortex and spinal cord derived neuronal networks. Neurotoxicology. 37, 19–25 (2013)

    Article  Google Scholar 

  • C.G. Langhammer, M.K. Kutzing, V. Luo, J.D. Zahn, B. Firestein, A topographically modified substrate-embedded MEA for directed myotube formation at electrode contact sites. Ann. Biomed. Eng. 41, 408 (2013)

    Article  Google Scholar 

  • B.K. Leung, R. Biran, C.J. Underwood, P.A. Tresco, Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials. 29(23), 3289–3297 (2008)

    Article  Google Scholar 

  • D.A. Mair, E. Geiger, A.P. Pisano, J.M.J. Frechet, F. Svec, Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6(10), 1346–1354 (2006)

    Article  Google Scholar 

  • J.J. Mastrototaro, H.Z. Massoud, T.C. Pilkington, R.E. Ideker, Rigid and flexible thin-film multielectrode arrays for transmural cardiac recording. IEEE Trans. Biomed. Eng. 39(3), 271–279 (1992)

    Article  Google Scholar 

  • Nam, Yoonkey and Wheeler, B. C, Multichannel recording and stimulation of neuronal cultures grown on microstamped poly-D-lysine. 4049 p (2004)

  • Y. Nam, K. Musick, B.C. Wheeler, Application of a PDMS microstencil as a replaceable insulator toward a single-use planar microelectrode array. Biomed. Microdevices 8(4), 375–381 (2006)

    Article  Google Scholar 

  • E.G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P.W. Burridge, B. Patlolla, A.S. Lee, et al., Screening drug-induced arrhythmia using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation. 128(11), S3 (2013)

    Article  Google Scholar 

  • V. Nock, R.J. Blaikie, T. David, Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices. Lab. Chip. 8(8), 1300–1307 (2008)

    Article  Google Scholar 

  • H. Oka, K. Shimono, R. Ogawa, H. Sugihara, M. Taketani, A new planar multielectrode array for extracellular recording: Application to hippocampal acute slice. J. Neurosci. Methods. 93(1), 61–67 (1999)

    Article  Google Scholar 

  • X.C. Ong, G.K. Fedder, P.J. Gilgunn, Modulation of parylene-C to silicon adhesion using HMDS priming. J. Micromech. Microeng. 24(10), 105001 (2014)

    Article  Google Scholar 

  • J.J. Pancrazio, J.P. Whelan, D.A. Borkholder, W. Ma, D.A. Stenger, Development and application of cell-based biosensors. Ann. Biomed. Eng. 27(6), 697–711 (1999)

    Article  Google Scholar 

  • J.J. Pancrazio, S.A. Gray, Y.S. Shubin, N. Kulagina, D.S. Cuttino, K.M. Shaffer, K. Eisemann, A. Curran, B. Zim, G.W. Gross, et al., A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection. Biosens. Bioelectron. 18(11), 1339–1347 (2003)

    Article  Google Scholar 

  • D.A. Robinson, The electrical properties of metal microelectrodes. Proc. IEEE. 56(6), 1065–1071 (1968)

    Article  Google Scholar 

  • Ryynänen T., Kujala V., Ylä-Outinen L., Kerklä E., Narkilahti S. and Lekkala J, Polystyrene coated MEA. Proceedings of the 7th intl. meeting on substrate-integrated microelectrode arrays; June 29–July 2; BIOPRO Baden-Württemberg GmbH. 265–266 p (2010)

  • A. Scarlatos, A.J. Cadotte, T.B. DeMarse, B.A. Welt, Cortical networks grown on microelectrode arrays as a biosensor for botulinum toxin. J. Food Sci. 73(3), E129–E136 (2008)

    Article  Google Scholar 

  • A. Stett, U. Egert, E. Guenther, F. Hofmann, T. Meyer, W. Nisch, H. Haemmerle, Biological application of microelectrode arrays in drug discovery and basic research. Anal. Bioanal. Chem. 377(3), 486–495 (2003)

    Article  Google Scholar 

  • T. Trantidou, C.M. Terracciano, D. Kontziampasis, E.J. Humphrey, T. Prodromakis, Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials. Sci. Rep. 5, 11067 (2015)

    Article  Google Scholar 

  • C.W. Tsao, D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6(1), 1–16 (2009)

    Article  Google Scholar 

  • D.A. Wagenaar, J. Pine, S.M. Potter, Effective parameters for stimulation of dissociated cultures using multi-electrode arrays. J. Neurosci. Methods 138(1), 27–37 (2004)

    Article  Google Scholar 

  • G. Xiang et al., Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro. Biosens. Bioelectron. 22(11), 2478–2484 (2007)

    Article  Google Scholar 

  • E.W.K. Young, E. Berthier, D.J. Guckenberger, E. Sackmann, C. Lamers, I. Meyvantsson, A. Huttenlocher, D.J. Beebe, Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal. Chem. 83(4), 1408–1417 (2011)

    Article  Google Scholar 

  • Zhang Y, Zhang X, Fang J, Jiang S, Zhang Y, Gu D, Nelson RD, and LaRue JC. 30 September, Application of SU-8 as the insulator toward a novel planar microelectrode array for extracellular neural recording. Proceedings of the 2010 5th IEEE international conference on nano/micro engineered and molecular systems; 20–23 January 2010; 395 p (2010)

Download references

Acknowledgements

The authors acknowledge support from NSF PFI grant number IIP-1114211 (PI: BE Gnade). The authors would also like to thank the staff of the University of Texas at Dallas clean room for many helpful processing suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Hammack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammack, A., Rihani, R.T., Black, B.J. et al. A patterned polystyrene-based microelectrode array for in vitro neuronal recordings. Biomed Microdevices 20, 48 (2018). https://doi.org/10.1007/s10544-018-0295-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0295-3

Keywords

Navigation