Skip to main content
Log in

From polydisperse diatomaceous earth to biosilica with specific morphologies by glucose gradient/dialysis: a natural material for cell growth

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Starting from polydisperse diatomaceous earth (DE), we proposed an efficient separation method for obtaining different morphologies of bio-silica from diatoms. DE is a very low-cost source of silica containing all the differently nanostructured elements. By a glucose gradient/dialysis, three types of biosilica morphologies were achieved: rods, valves, and clusters. We fully characterized the diatom fractions and we used them to produce fluorescent biosilica platforms (“tabs”). These supports exhibited good resistance in water, ethanol, and soft scraping. A preliminary biologic application by testing Saos-2 proliferation was also performed to check osteoblasts-like cells biologic attitude for this scaffolds with tunable nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. Z.-A. Alothman: A review: fundamental aspects of silicate mesoporous materials. Materials, 5, 2874–2902 (2013).

    Article  Google Scholar 

  2. H. Luelf, A. Devaux, E.-A. Prasetyanto, and L. De Cola: Porous nanoma-terials for biomedical applications. In Organic Nanomaterials: Synthesis, Characterization, and Device Applications, edited by T. Torres, G. Bottari (John Wiley & Sons., Inc., Hoboken, New Jersey, 2013), Chapter 22, pp. 487–507.

    Chapter  Google Scholar 

  3. M. Pagliaro: Silica-Based Materials for Advanced Chemical Applications (RSC Publishing, Cambridge, 2009), Chapter 8, pp. 176–186.

    Google Scholar 

  4. I.-I. Slowing, B.-G. Trewyn, S. Giri, and V.-S.-Y. Lin: Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater., 17, 1225–1236 (2007).

    Article  CAS  Google Scholar 

  5. R. Jugdaohsingh: Silicon and bone health. J. Nutr. Health Aging, 11, 99–110 (2007).

    CAS  Google Scholar 

  6. M.-Q. Arumugam, D.-C. Ireland, R.-A. Brooks, N. Rushton, and W. Bonfield: Orthosilicic acid increases collagen type I mRNA expression in human bone-derived osteoblasts in vitro. Key Eng. Mater. 254–256, 869–872 (2004).

    Google Scholar 

  7. M. López-Álvarez, E.-L. Solla, P. González, J. Serra, B. León, A.-P. Marques, and R.-L. Reis: Silicon–hydroxyapatite bioactive coatings (Si–HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells. J. Mater. Sci: Mater. Med. 20, 1131–1136 (2009).

    Google Scholar 

  8. C.-H. Lohmann, E. M. Tandy, V.-L. Sylvia, A.-K. Hell-Vocke, D.-L. Cochran, D.-D. Dean, B.-D. Boyan, and Z. Schwartz: Response of normal female human osteoblasts (NHOst) to 17β-estradiol is modulated by implant surface morphology. J. Biomed. Mater. Res., 62, 204–213 (2002).

    Article  CAS  Google Scholar 

  9. B.-D. Boyan, S. Lossdorfer, L. Wang, G. Zhao, C.-H. Lohmann, D.-L. Cochran, and Z. Schwartz: Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur. Cell. Mater., 5, 11–12 (2003).

    Google Scholar 

  10. M. Mante, B. Daniels, E. Golden, D. Diefenderfer, G. Reilly, and P.-S. Leboy: Attachment of human marrow stromal cells to titanium surfaces. J. Oral. Implantol., 29, 66–72 (2003).

    Article  Google Scholar 

  11. S. Lossdorfer, Z. Schwartz, L. Wang, C. H. Lohmann, J.-D. Turner, M. Wieland, D.-L. Cochran, and B.-D. Boyan: Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J. Biomed. Mater. Res. 70A, 361–369 (2004).

    Article  Google Scholar 

  12. O. Zinger, K. Anselme, A. Denzer, P. Habersetzer, M. Wieland, J. Jeanfils, P. Hardouin, and D. Landolt: Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials, 25, 2695–2711 (2004).

    Article  CAS  Google Scholar 

  13. F. Lüthen, R. Lange, P. Becker, J. Rychly, U. Beck, and J.-G.-B. Nebe: The influence of surface roughness of titanium on β1- and β3-integrin adhesion and the organization of fibronectin in human osteoblastic cells. Biomaterials, 26, 2423–2440 (2005).

    Article  Google Scholar 

  14. H. Schweikl, R. Müller, C. Englert, K.-A. Hiller, R. Kujat, M. Nerlich, and G. Schmalz: Proliferation of osteoblasts and fibroblasts on model surfaces of varying roughness and surface chemistry. J. Mater. Sci.: Mater. Med., 18, 1895–1905 (2007).

    CAS  Google Scholar 

  15. J.-Y. Martin, Z. Schwartz, T.-W. Hummert, D.-M. Schraub, J. Simpson, J. Lankford Jr, D.-D. Dean, D.-L. Cochran, and B.-D. Boyan: Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J. Biomed. Mater. Res., 29, 389–401 (1995).

    Article  CAS  Google Scholar 

  16. K. Kieswetter, Z. Schwartz, T.-W. Humrnert, D.-L. Cochran, J. Simpson, D.-D. Dean, and B.-D. Boyan: Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J. Biomed. Mater. Res., 32, 55–63 (1996).

    Article  CAS  Google Scholar 

  17. R.-L. Price, K. Ellison, K.-M. Haberstroh, and T.-J. Webster: Nanometer surface roughness increases select osteoblast adhesion on carbon nano-fiber compacts. J. Biomed. Mater. Res. 70A, 129–138 (2004).

    Article  CAS  Google Scholar 

  18. O. Zinger, G. Zhao, Z. Schwartz, J. Simpson, M. Wieland, D. Landolt, and B. Boyan: Differential regulation of osteoblasts by substrate microstructural features. Biomaterials, 26, 1837–1847 (2005).

    Article  CAS  Google Scholar 

  19. D. Zhang, Y. Wang, J. Pan, and J. Cai: Separation of diatom valves and girdle bands from Coscinodiscus diatomite by settling method. J. Mater. Sci., 45, 5736–5741 (2010).

    Article  CAS  Google Scholar 

  20. K.-B. Carlisle, V. Brito, G.-M. Gladysz, W. Ricci, and M. Koopman: Fabrication and finite element modeling of ellipsoidal macro-shells. J. Mater. Sci., 44, 1449–1445 (2009).

    Article  CAS  Google Scholar 

  21. D. Vona, G. Leone, R. Ragni, F. Palumbo, A. Evidente, M. Vurro, G.-M. Farinola, and S. Cicco: Diatoms biosilica as efficient drug-delivery system. MRS Adv., 1, 3825–3830 (2015).

    Article  Google Scholar 

  22. S.-R. Cicco, D. Vona, E. De Giglio, S. Cometa, M. Mattioli-Belmonte, F. Palumbo, R. Ragni, and G.-M. Farinola: Chemically modified diatoms biosilica for bone cell growth with combined drug-delivery and antioxi-dant properties. ChemPlusChem, 80, 1104–1112 (2015).

    Article  CAS  Google Scholar 

  23. W. Jiang, S. Luo, P. Liu, X. Deng, Y. Jing, C. Bai, and J. Li: Purification of biosilica from living diatoms by a two-step acid cleaning and baking method. J. Appl. Phycol., 26, 1511–1518 (2014).

    Article  CAS  Google Scholar 

  24. B.-J. Hanson, B. Schulenberg, W.-F. Patton, and R.-A. Capaldi: A novel subfractionation approach for mitochondrial proteins: a three-dimensional mitochondrial proteome map. Electrophoresis 22, 950–959 (2001).

    Article  CAS  Google Scholar 

  25. B.-J. Hanson, R. Carrozzo, F. Piemonte, A. Tessa, B.-H. Robinson, and R.-A. Capaldi: Cytochrome c oxidase-deficient patients have distinct subunit assembly profiles. J. Biol. Chem., 276, 16296–16301 (2001).

    Article  CAS  Google Scholar 

  26. M. Pálmai, L.-N. Nagy, J. Mihály, Z. Varga, G. Tárkányi, R. Mizsei, I. C. Szigyártó, T. Kiss, T. Kremmer, and A. Bóta: Preparation, purification, and characterization of aminopropyl-functionalized silica sol. J. Colloid Int. Sci., 390, 34–40 (2013).

    Article  Google Scholar 

  27. Y. Lang, F. Del Monte, B.-J. Rodriguez, P. Dockery, D.-P. Finn, and A. Pandit: Integration of TiO2 into the diatom Thalassiosira weissflogii during frustule synthesis. Sci. Rep., 3, 1–11 (2013). doi: 10.1038/srep03205.

    Google Scholar 

  28. Y. Ohtsuka, T. Seki, and Y. Takeoka: Thermally tunable hydrogels displaying angle-independent structural colors. Angew. Chem. 54, 15368–15373 (2015).

    Article  CAS  Google Scholar 

  29. D.-K. Gale, C. Jeffryes, T. Gutu, J. Jiao, C. Chang, and G.-L. Rorrer: Thermal annealing activates amplified photoluminescence of germanium metabolically doped in diatom biosilica. J. Mater. Chem. 21, 10658–10665 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary Material

Supplementary Material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.27

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicco, S.R., Vona, D., Leone, G. et al. From polydisperse diatomaceous earth to biosilica with specific morphologies by glucose gradient/dialysis: a natural material for cell growth. MRS Communications 7, 214–220 (2017). https://doi.org/10.1557/mrc.2017.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.27

Navigation