Skip to main content
Log in

Size effects of micrometer-scaled metals—the search continues for materials containing real microstructures

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Recent observations on strength and deformation of small metals containing microstructures, including dislocation patterns, grain boundaries, and second-phase precipitates are reviewed. These microstructures impose an internal length scale that may interplay with the extrinsic length scale due to the specimen size to affect strength and deformation in an intricate manner. For micro-crystals containing pre-existing dislocations, Taylor work-hardening may dictate the dependence of strength on specimen size. The presence of grain boundaries in a small specimen may lead to effects far from the conventional Hall–Petch behavior. Precipitate–dislocation interactions in a small specimen may lead to an interesting weakest-size behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. R. Dou and B. Derby: A universal scaling law for the strength of metal micropillars and nanowires. Scr. Mater. 61, 524 (2009).

    Article  CAS  Google Scholar 

  2. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).

    Article  CAS  Google Scholar 

  3. A.H.W. Ngan, L. Zuo, and P.C. Wo: Size dependence and stochastic nature of yield strength of micron-sized crystals: a case study on Ni3Al. Prof. R. Soc. Lond. A462, 1661 (2006).

    Google Scholar 

  4. L. Zuo and A.H.W. Ngan: Molecular dynamics study on compressive yield strength in Ni3Al micro-pillars. Phil. Mag. Lett. 86, 355 (2006).

    Article  CAS  Google Scholar 

  5. J.R. Greer, W.C. Oliver, and W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).

    Article  CAS  Google Scholar 

  6. J.R. Greer and W.D. Nix: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

    Article  Google Scholar 

  7. Z.W. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).

    Article  CAS  Google Scholar 

  8. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313 (2007).

    Article  CAS  Google Scholar 

  9. D.M. Norfleet, D.M. Dimiduk, S.J. Polasik, M.D. Uchic, and M.J. Mills: Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988 (2008).

    Article  CAS  Google Scholar 

  10. K.S. Ng and A.H.W. Ngan: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).

    Article  CAS  Google Scholar 

  11. Y. Cui, C. Po, and N. Ghoniem: Controlling strain bursts and avalanches at the nano- to micrometer scale. Phys. Rev. Lett. 117, 155502 (2016).

    Article  Google Scholar 

  12. S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, M.D. Uchic, M. Tang, and C. Woodward: Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater. 56, 3245 (2008).

    Article  CAS  Google Scholar 

  13. J.A. El-Awady, M. Wen, and N.M. Ghoniem: The role of the weakest-link mechanism in controlling the plasticity of micropillars. J. Mech. Phys. Solids 57, 32 (2009).

    Article  Google Scholar 

  14. C. Motz, D. Weygand, J. Senger, and P. Gumbsch: Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater. 57, 1744 (2009).

    Article  CAS  Google Scholar 

  15. S. Akarapu, H.M. Zbib, and D.F. Bahr: Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int. J. Plast. 26, 239 (2010).

    Article  CAS  Google Scholar 

  16. M. Huang, L. Zhao, and J. Tong: Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys. Int. J. Plast. 28, 141 (2012).

    Article  CAS  Google Scholar 

  17. Y. Cui, P. Lin, Z.L. Liu, and Z. Zhuang: Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in FCC micropillars. Int. J. Plast. 55, 279 (2014).

    Article  Google Scholar 

  18. Q. Yu, M. Legros, and A.M. Minor: In situ TEM nanomechanics. MRS Bull. 40, 62 (2015).

    Article  Google Scholar 

  19. P.J. Imrich, C. Kirchlechner, D. Kiener, and G. Dehm: In situ TEM microcompression of single and bicrystalline samples: insights and limitations. JOM 67, 1704 (2015).

    Article  CAS  Google Scholar 

  20. R. Maaß, L. Meza, B. Gan, S. Tin, and J.R. Greer: Ultrahigh strength of dislocation-free Ni3Al nanocubes. Small 8, 1869 (2012).

    Article  Google Scholar 

  21. L.Y. Chen, M.-R. He, J. Shin, G. Richter, and D.S. Gianola: Measuring surface dislocation nucleation in defect-scarce nanostructures. Nature Mater. 14, 707 (2015).

    Article  CAS  Google Scholar 

  22. H. Bei, S. Shim, G.M. Pharr, and E.P. George: Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).

    Article  CAS  Google Scholar 

  23. C.R. Weinberger and W. Cai: Surface-controlled dislocaiton multiplication in metal micropillars. Proc. Nat. Acad. Sci. USA 105, 14304 (2008).

    Article  CAS  Google Scholar 

  24. T.T. Zhu, A.J. Bushby, and D.J. Dunstan: Materials mechanical size effects: a review. Mater. Technol. 23, 193 (2008).

    Article  CAS  Google Scholar 

  25. A.H.W. Ngan: An explanation for the power-law scaling of size effect on strength in micro-specimens. Scr. Mater. 65, 978 (2011).

    Article  CAS  Google Scholar 

  26. R. Gu and A.H.W. Ngan: Dislocation arrangement in small crystal volumes determines power-law size dependence of yield strength. J. Mech. Phys. Solids 61, 1531 (2013).

    Article  Google Scholar 

  27. A.S. Schneider, D. Kiener, C.M. Yakacki, H.J. Maier, P.A. Gruber, N. Tamura, M. Kunz, A.M. Minor, and C.P. Frick: Influence of bulk pre-straining on the size effect in nickel compression pillars. Mater. Sci. Eng. A 559, 147 (2013).

    Article  CAS  Google Scholar 

  28. J.A. El-Awady, M.D. Uchic, P.A. Shade, S.-L. Kim, S.I. Rao, D.M. Dimiduk, and C. Woodward: Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals. Scr. Mater. 68, 207 (2013).

    Article  CAS  Google Scholar 

  29. P.S. Phani, K.E. Johanns, E.P. George, and G.M. Pharr: A simple stochastic model for yielding in specimens with limited number of dislocations. Acta Mater. 61, 2489 (2013).

    Article  Google Scholar 

  30. J.A. El-Awady: Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6, 5926 (2015).

    Article  Google Scholar 

  31. R. Gu and A.H.W. Ngan: Effects of pre-straining and coating on plastic deformation of aluminum micropillars. Acta Mater. 60, 6102 (2012).

    Article  CAS  Google Scholar 

  32. B. Ehrler, X.D. Hou, T.T. Zhu, K.M.Y. Png, C.J. Walker, A.J. Bushby, and D.J. Dunstan: Grain size and sample size interact to determine strength in a soft metal. Phil. Mag. 88, 3043 (2008).

    Article  CAS  Google Scholar 

  33. X.X. Chen and A.H.W. Ngan: Specimen size and grain size effects on tensile strength of Ag microwires. Scr. Mater. 64, 717 (2011).

    Article  CAS  Google Scholar 

  34. C. Keller, E. Hug, and X. Feaugas: Microstructural size effects on mechanical properties of high purity nickel. Int. J. Plast. 27, 635 (2011).

    Article  CAS  Google Scholar 

  35. X.X. Chen and A.H.W. Ngan: Tensile deformation of silver micro-wires of small thickness-to-grain-size ratios. Mater. Sci. Eng. A 539, 74 (2012).

    Article  CAS  Google Scholar 

  36. P.S.S. Leung and A.H.W. Ngan: Size effect on the strength of micron-sized polycrystals—a dislocation dynamics simulation study. Scr. Mater. 69, 235 (2013).

    Article  CAS  Google Scholar 

  37. R. Gu and A.H.W. Ngan: Size effect on the deformation behavior of duralumin micropillars. Scr. Mater. 68, 861 (2013).

    Article  CAS  Google Scholar 

  38. K. Gan, R. Gu, and A.H.W. Ngan: The weakest size of precipitated alloys in the micro regime: the case of duralumin. Submitted to J. Mater. Res.

  39. R. Gu, P.S.S. Leung, and A.H.W. Ngan: Size effect on deformation of duralumin micropillars—a dislocation dynamics study. Scr. Mater. 76, 73 (2014).

    Article  CAS  Google Scholar 

  40. C. Zhou, I.J. Beyerlein, and R. LeSar: Plastic deformation mechanisms of fcc single crystals at small scales. Acta Mater. 59, 7673 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support by the Kingboard Professorship Endowment is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. W. Ngan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngan, A.H.W., Chen, X.X., Leung, P.S.S. et al. Size effects of micrometer-scaled metals—the search continues for materials containing real microstructures. MRS Communications 7, 131–140 (2017). https://doi.org/10.1557/mrc.2017.23

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.23

Navigation