Skip to main content
Log in

In Situ TEM Microcompression of Single and Bicrystalline Samples: Insights and Limitations

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In situ micromechanical compression experiments in a transmission electron microscope enable the study and analysis of small-scale deformation behavior. The implementation of instrumented indenter systems allows measuring the force and displacement, providing additionally insights on sample strength and flow behavior. Using focused ion beam sample preparation, single- and bicrystalline specimens can be fabricated to study the influence of individual grain boundaries on the mechanical behavior. Taperless single crystalline and bicrystalline Cu compression pillars including a coherent twin boundary were deformed in scanning and conventional transmission electron microscopy mode to study the applicability of both techniques for examining dislocation dynamics and interaction with the boundary. Based on experimental results, possibilities and limitations of such experiments are critically discussed, including sample preparation, in situ annealing to remove ion beam-induced defects, imaging of dislocations, and acquisition of stress–strain data. Finally, an outlook is given on the potential of micromechanical in situ transmission electron microscopic experiments for analyzing the influence of grain boundaries on mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.D. Nix, Metall. Mater. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  2. G. Dehm, Prog. Mater. Sci. 54, 664 (2009).

    Article  Google Scholar 

  3. B. Wu, A. Heidelberg, and J.J. Boland, Nat. Mater. 4, 525 (2005).

    Article  Google Scholar 

  4. B. Yang, C. Motz, W. Grosinger, W. Kammrath, and G. Dehm, Int. J. Mater. Res. 99, 716 (2008).

    Article  Google Scholar 

  5. J.R. Greer, W.C. Oliver, and W.D. Nix, Acta Mater. 53, 1821 (2005).

    Article  Google Scholar 

  6. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, Acta Mater. 56, 580 (2008).

    Article  Google Scholar 

  7. C. Motz, T. Schöberl, and R. Pippan, Acta Mater. 53, 4269 (2005).

    Article  Google Scholar 

  8. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986 (2004).

    Article  Google Scholar 

  9. H. Bei, S. Shim, G.M. Pharr, and E.P. George, Acta Mater. 56, 4762 (2008).

    Article  Google Scholar 

  10. S.I. Rao, D.M. Dimiduk, M. Tang, T.A. Parthasarathy, M.D. Uchic, and C. Woodward, Philos. Mag. 87, 4777 (2007).

    Article  Google Scholar 

  11. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle, Scr. Mater. 56, 313 (2007).

    Article  Google Scholar 

  12. J.R. Greer and W.D. Nix, Phys. Rev. B 73, 245410 (2006).

    Article  Google Scholar 

  13. H. Wilsdorf, Symposium on Advances in Electron Microscopy, ASTM STP, 1958, p. 43.

  14. Z. Shen, R.H. Wagoner, and W.A.T. Clark, Acta Metall. 36, 3231 (1988).

    Article  Google Scholar 

  15. A. Couret, J. Crestou, S. Farenc, G. Molenat, N. Clement, A. Coujou, and D. Caillard, Micr. Microanal. M 4, 153 (1993).

    Article  Google Scholar 

  16. M. Legros, C. R. Phys. 15, 224 (2014).

    Article  Google Scholar 

  17. G. Dehm, T.J. Balk, H. Edongué, and E. Arzt, Microelectron. Eng. 70, 412 (2003).

    Article  Google Scholar 

  18. B.J. Inkson, G. Dehm, and T. Wagner, Acta Mater. 50, 5033 (2002).

    Article  Google Scholar 

  19. M. Haque and M. Saif, J. Mater. Res. 20, 1769 (2005).

    Article  Google Scholar 

  20. H.D. Espinosa, Y. Zhu, and N. Moldovan, J. Microelectromech. Syst. 16, 1219–1231 (2007).

    Article  Google Scholar 

  21. Y. Lu, Y. Ganesan, and J. Lou, Exp. Mech. 50, 47 (2010).

    Article  Google Scholar 

  22. H. Guo, K. Chen, Y. Oh, K. Wang, C. Dejoie, S.A. Syed Asif, O.L. Warren, Z.W. Shan, J. Wu, and A.M. Minor, Nano Lett. 11, 3207 (2011).

    Article  Google Scholar 

  23. O.L. Warren, Z. Shan, S.A.S. Asif, E.A. Stach, J.W. Morris Jr, and A.M. Minor, Mater. Today 10, 59 (2007).

    Article  Google Scholar 

  24. Z. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, and A.M. Minor, Nat. Mater. 7, 115 (2007).

    Article  Google Scholar 

  25. D. Kiener and A.M. Minor, Acta Mater. 59, 1328 (2011).

    Article  Google Scholar 

  26. D. Kiener, P. Kaufmann, and A.M. Minor, Adv. Eng. Mater. 14, 960 (2012).

    Article  Google Scholar 

  27. D. Kiener and A. Minor, Nano Lett. 11, 3816 (2011).

    Article  Google Scholar 

  28. C. Chisholm, H. Bei, M.B. Lowry, J. Oh, S.A. Syed Asif, O.L. Warren, Z.W. Shan, E.P. George, and A.M. Minor, Acta Mater. 60, 2258–2264 (2012).

    Article  Google Scholar 

  29. G. Dehm, J.M. Howe, and J. Zweck, In-situ Electron Microscopy: Applications in Physics, Chemistry and Materials Science (Weinheim: Wiley-VCH, 2012).

    Book  Google Scholar 

  30. D. Kiener, Z. Zhang, S. Šturm, S. Cazottes, P.J. Imrich, C. Kirchlechner, and G. Dehm, Philos. Mag. 92, 3269 (2012).

    Article  Google Scholar 

  31. O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand, Annu. Rev. Mater. Sci. 40, 293 (2010).

    Article  Google Scholar 

  32. M.B. Lowry, D. Kiener, M.M. LeBlanc, C. Chisholm, J.N. Florando, J.W. Morris Jr, and A.M. Minor, Acta Mater. 58, 5160 (2010).

    Article  Google Scholar 

  33. C. Kirchlechner, J. Keckes, C. Motz, W. Grosinger, M.W. Kapp, J.S. Micha, O. Ulrich, and G. Dehm, Acta Mater. 59, 5618 (2011).

    Article  Google Scholar 

  34. P.A. Shade, R. Wheeler, Y.S. Choi, M.D. Uchic, D.M. Dimiduk, and H.L. Fraser, Acta Mater. 57, 4580 (2009).

    Article  Google Scholar 

  35. M. Schamel, The influence of interfaces on small-scale mechanical behavior: from fcc metals to polymer/ceramic composites (Ph.D. thesis, ETH Zurich, 2014).

  36. D. Raabe, D. Ma, and F. Roters, Acta Mater. 55, 4567 (2007).

    Article  Google Scholar 

  37. B. Daum, G. Dehm, H. Clemens, M. Rester, F.D. Fischer, and F.G. Rammerstorfer, Acta Mater. 61, 4996 (2013).

    Article  Google Scholar 

  38. H. Zhang, B.E. Schuster, Q. Wei, and K.T. Ramesh, Scr. Mater. 54, 181 (2006).

    Article  Google Scholar 

  39. P.J. Imrich, C. Kirchlechner, C. Motz, and G. Dehm, Acta Mater. 73, 240 (2014).

    Article  Google Scholar 

  40. P.J. Imrich, C. Kirchlechner, D. Kiener, and G. Dehm, Scr. Mater. 100, 94 (2015).

    Article  Google Scholar 

  41. D. Gianola and C. Eberl, JOM 61, 24 (2009).

    Article  Google Scholar 

  42. F. Di Gioacchino and W.J. Clegg, Acta Mater. 78, 103 (2014).

    Article  Google Scholar 

  43. P. Gumbsch, Science 283, 965 (1999).

    Article  Google Scholar 

  44. E.A. Stach, D. Zakharov, R.D. Rivas, P. Longo, M. Lent, A. Gubbens, and C. Czarnik, Microsc. Microanal. 19, 392 (2013).

    Google Scholar 

  45. H.-G. Liao, D. Zherebetskyy, H. Xin, C. Czarnik, P. Ercius, H. Elmlund, M. Pan, L.-W. Wang, and H. Zheng, Science 345, 916 (2014).

    Article  Google Scholar 

  46. A. Dubach, R. Raghavan, J.F. Löffler, J. Michler, and U. Ramamurty, Scr. Mater. 60, 567 (2009).

    Article  Google Scholar 

  47. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  MathSciNet  Google Scholar 

  48. C. Motz, D. Weygand, J. Senger, and P. Gumbsch, Acta Mater. 56, 1942 (2008).

    Article  Google Scholar 

  49. C. Kirchlechner, W. Grosinger, M. Kapp, P. Imrich, J.-S. Micha, O. Ulrich, J. Keckes, G. Dehm, and C. Motz, Philos. Mag. 92, 3231 (2012).

    Article  Google Scholar 

  50. M.W. Kapp, C. Kirchlechner, R. Pippan, and G. Dehm, J. Mater. Res. 30, 791 (2015).

    Article  Google Scholar 

  51. F. Mompiou, D. Caillard, M. Legros, and H. Mughrabi, Acta Mater. 60, 3402 (2012).

    Article  Google Scholar 

  52. J. Rajagopalan, J.H. Han, and M.T.A. Saif, Scr. Mater. 59, 734 (2008).

    Article  Google Scholar 

  53. G. Moser, H. Felber, B. Rashkova, P.J. Imrich, C. Kirchlechner, W. Grosinger, C. Motz, G. Dehm, and D. Kiener, Pract. Metallogr. 49, 343 (2012).

    Article  Google Scholar 

  54. S. Kondo, N. Shibata, T. Mitsuma, E. Tochigi, and Y. Ikuhara, Appl. Phys. Lett. 100, 181906 (2012).

    Article  Google Scholar 

  55. S. Lee, J. Im, Y. Yoo, E. Bitzek, D. Kiener, G. Richter, B. Kim, and S.H. Oh, Nat. Commun. 5, 3033 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors thank Linlin Li, Xianghai An and Zhefeng Zhang of the Shenyang National Laboratory for Materials Science in China for providing the bulk Cu bicrystals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Dehm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imrich, P.J., Kirchlechner, C., Kiener, D. et al. In Situ TEM Microcompression of Single and Bicrystalline Samples: Insights and Limitations. JOM 67, 1704–1712 (2015). https://doi.org/10.1007/s11837-015-1440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1440-6

Keywords

Navigation