Skip to main content
Log in

Controlling the nanoscale morphology and structure of the ZnO/MnO2 system for efficient transparent supercapacitors

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We discuss relationships between transparent supercapacitor performance and the morphology of its ZnO nanostructured electrodes. The electrodes with different morphologies were prepared by magnetron sputtering and postdeposition annealing. They were decorated with MnO2 nanostructures and tested in symmetric transparent supercapacitors. The capacitances for discharging at 10 µA/cm2 were in the range of 20–53 µF/cm2, meaning that an increase of 250% in capacitance can be obtained by optimizing the electrode morphology. Optimal morphologies were hierarchical with a large range of pore sizes available. The worst performing had the smallest range of pore sizes. Best devices exhibited transparencies above 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Table I
Figure 5

Similar content being viewed by others

References

  1. E. Fortunato, P. Barquinha, and R. Martins: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945 (2012).

    Article  CAS  Google Scholar 

  2. K. Gao, Z. Shao, X. Wu, X. Wang, Y. Zhang, W. Wang, and F. Wang: Paper-based transparent flexible thin film supercapacitors. Nanoscale 5, 5307 (2013).

    Article  CAS  Google Scholar 

  3. J. Ge, G. Cheng, and L. Chen: Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 3, 3084 (2011).

    Article  CAS  Google Scholar 

  4. P. Kanninen, N. Dang Luong, L.H. Sinh, I.V. Anoshkin, A. Tsapenko, J. Seppälä, A.G. Nasibulin, and T. Kallio: Transparent and flexible highperformance supercapacitors based on single-walled carbon nanotube films. Nanotechnology 27, 235403 (2016).

    Article  Google Scholar 

  5. X.Y. Liu, Y.Q. Gao, and G.W. Yang: A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes. Nanoscale 8, 4227 (2016).

    Article  CAS  Google Scholar 

  6. M.A. Borysiewicz, M. Wzorek, M. Mysliwiec, J. Kaczmarski, and M. Ekielski: MnO2 ultrathin films deposited by means of magnetron sputtering: relationships between process conditions, structural properties and performance in transparent supercapacitors. Superlattices Microstruct. 100, 1213 (2016).

    Article  CAS  Google Scholar 

  7. A. Lyubchyk, A. Vicente, P.U. Alves, B. Catela, B. Soule, T. Mateus, M. J. Mendes, H. Águas, E. Fortunato, and R. Martins: Influence of post‐dep-osition annealing on electrical and optical properties of ZnO‐based TCOs deposited at room temperature. Phys. Status Solidi A 213, 2317 (2016).

    Article  CAS  Google Scholar 

  8. F. Beguin and E. Fra˛ckowiak: Supercapacitors: Materials, Systems and Applications, 1st reprint, (Wiley-VCH Verlag, Weinheim, 2013), p. 185.

    Book  Google Scholar 

  9. M.A. Borysiewicz, T. Wojciechowski, E. Dynowska, E. Kaminska, and A. Piotrowska: Investigation of porous Zn growth mechnism during Zn reactive sputter deposition. Acta Phys. Polon. A 125, 1144 (2014).

    Article  Google Scholar 

  10. M.A. Borysiewicz, E. Dynowska, V. Kolkovsky, J. Dyczewski, M. Wielgus, E. Kaminska, and A. Piotrowska: From porous to dense thin ZnO films through reactive DC sputter deposition onto Si (100) substrates. Phys. Status Solidi A 209, 2463 (2012).

    Article  CAS  Google Scholar 

  11. M. Masłyk, M.A. Borysiewicz, M. Wzorek, T. Wojciechowski, M. Kwoka, and E. Kaminska: Influence of absolute argon and oxygen flow values at a constant ratio on the growth of Zn/ZnO nanostructures obtained by DC reactive magnetron sputtering. Appl. Surf. Sci. 389, 287 (2016).

    Article  Google Scholar 

  12. A. Janotti and C.G. van de Walle: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009).

    Article  Google Scholar 

  13. Y. Luo: Preparation of MnO2 nanoparticles by directly mixing potassium permanganate and polyelectrolyte aqueous solutions. Mater. Lett. 61, 1893 (2007).

    Article  CAS  Google Scholar 

  14. G. Wang, X. Lu, Y. Ling, T. Zhai, H. Wang, Y. Tong, and Y. Li: LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudoca-pacitors. ACS Nano 6, 10296 (2012).

    Article  CAS  Google Scholar 

  15. H. Zhong, F. Xu, Z. Li, R. Fu, and D. Wu: High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes. Nanoscale 5, 4678 (2013).

    Article  CAS  Google Scholar 

  16. S. Dutta, A. Bhaumik, and K.C-W. Wu: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574 (2014).

    Article  CAS  Google Scholar 

  17. S. Leyva-García, D. Lozano-Castelló, E. Morallón, and D. Cazorla-Amorós: Silica-templated ordered mesoporous carbon thin films as electrodes for micro-capacitors. J. Mater. Chem. A 4, 4570 (2016).

    Article  Google Scholar 

  18. S. Khalid, C. Cao, L. Wang, and Y. Zhu: Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 6, 22699 (2016).

    Article  CAS  Google Scholar 

  19. Project Web page: http://www.naczo.ite.waw.pl/en/home.html (accessed March 14, 2017).

Download references

Acknowledgment

This majority of this research was supported by the National Centre for Research and Development in the frames of the Lider V Programme through the project “Nanocoral zinc oxide-based supercapacitors for transparent electronics (NACZO)”, contract: LIDER/030/615/L-5/NCBR/2014.[19]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Borysiewicz.

Supplementary material

43579_2017_7020173_MOESM1_ESM.pdf

Controlling the Nanoscale Morphology and Structure of the ZnO/MnO2 System for Efficient Transparent Supercapacitor Electrodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borysiewicz, M.A., Wzorek, M., Ekielski, M. et al. Controlling the nanoscale morphology and structure of the ZnO/MnO2 system for efficient transparent supercapacitors. MRS Communications 7, 173–178 (2017). https://doi.org/10.1557/mrc.2017.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.16

Navigation