Skip to main content
Log in

X-ray reflectometry investigation of interfacial structure of CrAIN/TiAIN multilayers

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

TiAIN, CrAIN films and alternate CrAIN/TiAIN multilayers with different repeated bilayer thickness ranging from 10 to 30 nm were prepared by reactive magnetron sputtering. The interface structures of the films were characterized using x-ray reflectometry method. The individual thickness of the repeated bilayers in multilayers and total thickness of the films are close to the nominal thickness and they are more accurate for thicker films. The interface roughness increases as the thickness of the repeated bilayer in mutilayers decreases. The scattering length density profiles of the films suggests that the chemical composition is more accurate for thicker films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2
Figure 3
Table II
Figure 4

Similar content being viewed by others

References

  1. R.M. Souto and H. Alanyali: Electrochemical characteristics of steel coated with TiN and TiAlN coatings. Corros. Sci. 42, 2201 (2000).

    Article  CAS  Google Scholar 

  2. V.K.W. Grips, H.C. Barshilia, V.E. Selvi, and R.K.S. Kalavati: Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering. Thin Solid Films 514, 204 (2006).

    Article  CAS  Google Scholar 

  3. G.T. Liu, J.G. Duh, K.H. Cheng, and J.H. Wang: Mechanical characteristics and corrosion behavior of (Ti,Al)N coatings on dental alloys. Surf. Coat. Technol. 200, 2100 (2005).

    Article  CAS  Google Scholar 

  4. U. Wahlström, L. Hultman, J.E. Sundgren, F. Adibi, I. Petrov, and J.E. Greene: Crystal growth and microstructure of polycrystalline Ti1-xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering. Thin Solid Films 235, 62 (1993).

    Article  Google Scholar 

  5. S. Carvalho, L. Rebouta, A. Cavaleiro, L.A. Rocha, J. Gomes, and E. Alves: Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings. Thin Solid Films 398, 391 (2001).

    Article  Google Scholar 

  6. Q. Yang, D.Y. Seo, L.R. Zhao, and X.T. Zeng: Erosion resistance performance of magnetron sputtering deposited TiAIN coatings. Surf. Coat. Technol. 188–189, 168 (2004).

    Article  Google Scholar 

  7. G.S. Fox-Rabinovich, B.D. Beake, J.L. Endrino, S.C. Veldhuis, R. Parkinson, L.S. Shuster, and M.S. Migranov: Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings. Surf. Coat. Technol. 200, 5738 (2006).

    Article  CAS  Google Scholar 

  8. H. Willmann, P.H. Mayrhofer, P.O.Å. Persson, A.E. Reiter, L. Hultman, and C. Mitterer: Thermal stability of Al–Cr–N hard coatings. Scr. Mater. 54, 1847 (2006).

    Article  CAS  Google Scholar 

  9. R. Wuhrer and W.Y. Yeung: A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings. Scr. Mater. 50, 1461 (2004).

    Article  CAS  Google Scholar 

  10. M.A. Moreira, J. Bjurstrom, V. Yantchev, and I. Katardjiev: Synthesis and characterization of highly c-textured Al1-xScxN thin films in view of telecom applications. IOP Conf. Ser. Mater. Sci. Eng. 41, 1 (2012).

    Article  Google Scholar 

  11. F. Rovere, D. Music, J.M. Schneider, and P.H. Mayrhofer: Experimental and computational study on the effect of yttrium on the phase stability of sputtered Cr-Al-Y-N hard coatings. Acta Mater. 58, 2708 (2010).

    Article  CAS  Google Scholar 

  12. A. Miletic, P. Panjan, B. Škoric, M. Cekada, G. Dražic, and J. Kovac: Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering. Surf. Coat. Technol. 241, 105 (2014).

    Article  CAS  Google Scholar 

  13. H. Riedl, D. Holec, R. Rachbauer, P. Polcik, R. Hollerweger, J. Paulitsch, and H. Paul: Mayrhofer, Phase stability, mechanical properties and thermal stability of Y alloyed Ti-Al-N coatings, Surf. Coat. Technol. 235, 174 (2013).

    Article  CAS  Google Scholar 

  14. Y.Q. Wei, X.Y. Zong, Z.Z. Wu, X.B. Tian, C.Z. Gong, S.Q. Yang, Z.Q. Jiang, and L.J. Chen: Effects of modulation ratio on microstructure and properties of TiN/TiAlN multilayer coatings. Surf. Coat. Technol. 229, 191 (2013).

    Article  CAS  Google Scholar 

  15. P. Li, L. Chen, S.Q. Wang, B. Yang, Y. Du, J. Li, and M.J. Wu: Microstructure, mechanical and thermal properties of TiAlN/CrAlN multilayer coatings. Int. J. Refract. Met. H. 40, 51 (2013).

    Article  Google Scholar 

  16. Y.D. Sun, J.Y. Yan, S. Zhang, F.Y. Xue, G.Q. Liu, and D.J. Li: Influence of modulation periods and modulation ratios on the structure and mechanical properties of nanoscale TiAlN/TiB2 multilayers prepared by IBAD. Vacuum 86, 949 (2012).

    Article  CAS  Google Scholar 

  17. J.Y. Yan, D.J. Li, L. Dong, C.K. Gao, N. Wang, X.Y. Deng, H.Q. Gu, R.X. Wan, and X. Sun: The modulation structure induced changes in mechanical properties of TiAlN/Al2O3 multilayers. Nuclear Instrum. Meth. Phys. Res. B 307, 123 (2013).

    Article  CAS  Google Scholar 

  18. A. Rizzo, L. Mirenghi, M. Massaro, U. Galietti, L. Capodieci, R. Terzi, L. Tapfer, and D. Valerini: Improved properties of TiAlN coatings through the multilayer structure. Surf. Coat. Technol. 235, 475 (2013).

    Article  CAS  Google Scholar 

  19. C.E. Miller, J. Majewski, T. Gog, and T.L. Kuhl: Characterization of biological thin films at the solid-liquid interface by x-ray reflectivity. Phys. Rev. Lett. 94, 238104 (2005).

    Article  CAS  Google Scholar 

  20. T. Charitat, E. Bellet-Amalric, G. Fragneto, and F. Graner: Adsorbed and free lipid bilayers at the solid-liquid interface. Eur. Phys. J. 8, 583 (1999).

    Article  CAS  Google Scholar 

  21. R. Steitz, T. Gutberlet, T. Hauss, B. Liosgen, R. Krastev, and S. Schemmel: Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate. Langmuir 19, 2409 (2003).

    Article  CAS  Google Scholar 

  22. J. Pardo, T. Megademini, and J.M. Andre: X-UV synthetic interference mirrors: theoretical approach. Rev. Phys. Appl. 23, 1579 (1988).

    Article  Google Scholar 

  23. S.P. Liu, Y.B. Kang, H. Wang, Q. Li, L. Dong, X.Y. Deng, and D.J. Li: Influence of modulation ratio on the structure and mechanical properties of TiB2/TiAlN multilayered coatings. Mater. Lett. 62, 3536 (2008).

    Article  CAS  Google Scholar 

  24. C.K. Gao, J.Y. Yan, L. Dong, and D.J. Li: Influence of Al2O3 layer thickness on high-temperature stabilityof TiAlN/Al2O3 multilayers. Appl. Surf. Sci. 285, 287 (2013).

    Article  CAS  Google Scholar 

  25. L.G. Parratt: Surface studies of solids by total reflection of X-ray. Phys. Rev. 95, 359 (1954).

    Article  Google Scholar 

  26. S.K. Sinha, E.B. Sirota, and S. Garoff: X-ray and neutron scattering from rough surfaces. Phys. Rev. B 38, 2297 (1988).

    Article  CAS  Google Scholar 

  27. C. Braun: Parratt32 Software (ver.1.6). (HMI, Berlin, 2002).

    Google Scholar 

  28. H.C. Barshilia, A. Jain, and K.S. Rajam: Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings. Vacuum 72, 241 (2004).

    Article  Google Scholar 

  29. X. Chu, M.S. Wong, W.D. Sproul, S.L. Rohde, and S.A. Barnett: Deposition and properties of polycrystalline TiN/NbN superlattice coatings. J. Vac. Sci. Technol. A 10, 1604 (1992).

    Article  CAS  Google Scholar 

  30. S.Y. Yao, Y.L. Su, and W.H. Kao: Tribology and oxidation behaviour of TiN/AlN nano-multilayer films. Tribol. Int. 39, 332 (2006).

    Article  CAS  Google Scholar 

  31. J.S. Koehler: Attempt to design a strong solid. Phys. Rev. B 2, 547 (1970).

    Article  Google Scholar 

  32. S.K. Ghose, and B.N. Dev: X-ray standing wave and reflectometric characterization of multilayer structures. Phys. Rev. B 63, 245409 (2001).

    Article  Google Scholar 

  33. A. Gupta, D. Kumar, and V. Phatak: Asymmetric diffusion at the interfaces in Fe/Si multilayers. Phys. Rev. B 81, 155402 (2010).

    Article  Google Scholar 

  34. S. Singh, S. Basu, M. Gupta, C.F. Majkrzak, and P.A. Kienzle: Using acoustic waves to induce high-frequency current oscillations in superlattices. Phys. Rev. B 81, 235413 (2010).

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge Projects supported by NPL, CAEP (Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics) (2014BB05) and the Research Foundation of Education Bureau of Liaoning Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Wang, M., Zhang, G. et al. X-ray reflectometry investigation of interfacial structure of CrAIN/TiAIN multilayers. MRS Communications 6, 408–415 (2016). https://doi.org/10.1557/mrc.2016.44

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.44

Navigation