Skip to main content
Log in

Domain structures and magnetoelectric effects in multiferroic nanostructures

  • Functional Oxides Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Multiferroic nanostructures have been attracting tremendous attention not only for novel phenomena associated with fundamental physics, but also due to exciting application potentials in future nanoelectronic devices. In this mini-review, we first introduce several fabrication techniques recently developed for single phase and composite multiferroic nanostructures. Then, the topologic vortex domain structures in various ferroic nanostructures, which may bring about additional fundamental discoveries and applications in ultrahigh density recording, are discussed. Particular attention is paid to magnetoelectric effects in multiferroic nanodots, including room temperature electric field induced magnetic domain switching. Finally, existing challenges and new directions, e.g., cross-couplings among multiple functionalities, are prospected. We genuinely hope that this mini-review will arouse the readers’ interest in this fascinating field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).

    CAS  Google Scholar 

  2. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura: Magnetic control of ferroelectric polarization. Nature 426, 55 (2003).

    CAS  Google Scholar 

  3. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004).

    CAS  Google Scholar 

  4. Y. Tokura: Multiferroics-toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 310, 1145 (2007).

    CAS  Google Scholar 

  5. Y. Tokura and S. Seki: Multiferroics with spiral spin orders. Adv. Mater. 22, 1554 (2010).

    CAS  Google Scholar 

  6. R. Ramesh and N.A. Spaldin: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).

    CAS  Google Scholar 

  7. K.F. Wang, J.M. Liu, and Z.F. Ren: Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58, 321 (2009).

    CAS  Google Scholar 

  8. N.A. Spaldin and M. Fiebig: The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005).

    CAS  Google Scholar 

  9. S. Dong, J.-M. Liu, S.-W. Cheong, and Z. Ren: Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519 (2015).

    CAS  Google Scholar 

  10. N.A. Spaldin, S.-W. Cheong, and R. Ramesh: Multiferroics: past, present, and future. Phys. Today 63, 38 (2010).

    Google Scholar 

  11. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

    Google Scholar 

  12. W. Ratcliff, J.W. Lynn, V. Kiryukhin, P. Jain, and M.R. Fitzsimmons: Magnetic structures and dynamics of multiferroic systems obtained with neutron scattering. NPJ Quantum Mater. 1, 16003 (2016).

    Google Scholar 

  13. H. Han, Y. Kim, M. Alexe, D. Hesse, and W. Lee: Nanostructured ferroelectrics: fabrication and structure-property relations. Adv. Mater. 23, 4599 (2011).

    CAS  Google Scholar 

  14. I. Jung and J.Y. Son: Dip-Pen Lithography of BiFeO3 nanodots. J. Am. Ceram. Soc. 95, 3716 (2012).

    CAS  Google Scholar 

  15. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono: Magnetic vortex core observation in circular dots of permalloy. Science 289, 930 (2000).

    CAS  Google Scholar 

  16. B. Van Waeyenberge, A. Puzic, H. Stoll, K.W. Chou, T. Tyliszczak, R. Hertel, M. Fahnle, H. Bruckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C.H. Back, and G. Schutz: Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461 (2006).

    Google Scholar 

  17. K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono: Electrical switching of the vortex core in a magnetic disk. Nat. Mater. 6, 269 (2007).

    CAS  Google Scholar 

  18. I.I. Naumov, L. Bellaiche, and H. Fu: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737 (2004).

    CAS  Google Scholar 

  19. X. Lu, Y. Kim, S. Goetze, X. Li, S. Dong, P. Werner, M. Alexe, and D. Hesse: Magnetoelectric coupling in ordered arrays of multilayered heteroepitaxial BaTiO3/CoFe2O4 nanodots. Nano Lett. 11, 3202 (2011).

    CAS  Google Scholar 

  20. G. Tian, F.Y. Zhang, J.X. Yao, H. Fan, P.L. Li, Z.W. Li, X. Song, X.Y. Zhang, M.H. Qin, M. Zeng, Z. Zhang, J.J. Yao, X.S. Gao, and J.M. Liu: Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 10, 1025 (2016).

    CAS  Google Scholar 

  21. J.T. Heron, J.L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J.D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D.C. Ralph, D.G. Schlom, J. Iniguez, B.D. Huey, and R. Ramesh: Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370 (2014).

    CAS  Google Scholar 

  22. R. Guo, L. You, Y. Zhou, Z. Shiuh Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang: Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990 (2013).

    Google Scholar 

  23. H.J. Liu, L.Y. Chen, Q. He, C.W. Liang, Y.Z. Chen, Y.S. Chien, Y.H. Hsieh, S.J. Lin, E. Arenholz, C.W. Luo, Y.L. Chueh, Y.C. Chen, and Y.H. Chu: Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures. ACS Nano 6, 6952 (2012).

    CAS  Google Scholar 

  24. A. Lipatov, P. Sharma, A. Gruverman, and A. Sinitskii: Optoelectrical molybdenum disulfide (MoS2)-ferroelectric memories. ACS Nano 9, 8089 (2015).

    CAS  Google Scholar 

  25. R.O. Cherifi, V. Ivanovskaya, L.C. Phillips, A. Zobelli, I.C. Infante, E. Jacquet, V. Garcia, S. Fusil, P.R. Briddon, N. Guiblin, A. Mougin, A.A. Ünal, F. Kronast, S. Valencia, B. Dkhil, A. Barthélémy, and M. Bibes: Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345 (2014).

    CAS  Google Scholar 

  26. J.H. Li, I. Levin, J. Slutsker, V. Provenzano, P.K. Schenck, R. Ramesh, J. Ouyang, and A.L. Roytburd: Self-assembled multiferroic nanostructures in the CoFe2O4–PbTiO3 system. Appl. Phys. Lett. 87, 072909 (2005).

    Google Scholar 

  27. F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M.P. Cruz, P.L. Yang, D. Hao, and R. Ramesh: Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586 (2007).

    CAS  Google Scholar 

  28. Y. Wang, J.M. Hu, Y.H. Lin, and C.W. Nan: Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61 (2010).

    Google Scholar 

  29. Q. Miao, M. Zeng, Z. Zhang, X. Lu, J. Dai, X. Gao, and J.-M. Liu: Self-assembled nanoscale capacitor cells based on ultrathin BiFeO3 films. Appl. Phys. Lett. 104, 182903 (2014).

    Google Scholar 

  30. F.Y. Zhang, Q. Miao, G. Tian, Z.X. Lu, L.N. Zhao, H. Fan, X. Song, Z.W. Li, M. Zeng, X.S. Gao, and J.M. Liu: Unique nano-domain structures in self-assembled BiFeO3 and Pb(Zr,Ti)O3 ferroelectric nanocapacitors. Nanotechnology 27, 015703 (2016).

    Google Scholar 

  31. J. Ma, J. Hu, Z. Li, and C.-W. Nan: Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062 (2011).

    CAS  Google Scholar 

  32. H.J. Liu, W.I. Liang, Y.H. Chu, H.M. Zheng, and R. Ramesh: Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities. MRS Commun. 4, 31 (2014).

    Google Scholar 

  33. C.A.F. Vaz, J. Hoffman, C.H. Ahn, and R. Ramesh: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900 (2010).

    CAS  Google Scholar 

  34. L.N. Zhao, Z.X. Lu, F.Y. Zhang, G. Tian, X. Song, Z.W. Li, K.R. Huang, Z. Zhang, M.H. Qin, S.J. Wu, X.B. Lu, M. Zeng, X.S. Gao, J.Y. Dai, and J.M. Liu: Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates. Sci. Rep. 5, 9680 (2015).

    CAS  Google Scholar 

  35. X.S. Gao, B.J. Rodriguez, L.F. Liu, B. Birajdar, D. Pantel, M. Ziese, M. Alexe, and D. Hesse: Microstructure and properties of well-ordered multiferroic Pb(Zr,Ti)O3/CoFe2O4 nanocomposites. ACS Nano 4, 1099 (2010).

    CAS  Google Scholar 

  36. K. Cho, G. Loget, and R.M. Corn: Lithographically patterned nanoscale electrodeposition of plasmonic, bimetallic, semiconductor, magnetic, and polymer nanoring arrays. J. Phys. Chem. C 118, 28993 (2014).

    CAS  Google Scholar 

  37. J.F. Scott: Applications of modern ferroelectrics. Science 315, 954 (2007).

    CAS  Google Scholar 

  38. N. Ortega, K. Ashok, J.F. Scott, and S.K. Ram: Multifunctional magnetoelectric materials for device applications. J. Phys.—Condens. Mater. 27, 504002 (2015).

    CAS  Google Scholar 

  39. G. Tian, L. Zhao, Z. Lu, J. Yao, H. Fan, Z. Li, P. Li, D. Chen, X. Zhang, M. Qin, M. Zeng, Z. Zhang, J. Dai, X. Gao, and J.-M. Liu: Fabrication of periodically ordered BiFeO3 nanostructured arrays by template-assisted ion beam etching method. Under review.

  40. G. Catalan, J. Seidel, R. Ramesh, and J.F. Scott: Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).

    CAS  Google Scholar 

  41. X.S. Gao, F. Xue, M.H. Qin, J.M. Liu, B.J. Rodriguez, L.F. Liu, M. Alexe, and D. Hesse: Bubble polarization domain patterns in periodically ordered epitaxial ferroelectric nanodot arrays. J. Appl. Phys. 110, 052006 (2011).

    Google Scholar 

  42. L.D. Landau and E. Lifschitz: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. J. Sowjetunion 8, 153 (1935).

    Google Scholar 

  43. C. Kittel: Theory of the dispersion of magnetic permeability in ferromagnetic materials at microwave frequencies. Phys. Rev. 70, 281 (1946).

    Google Scholar 

  44. K.Y. Guslienko, X.F. Han, D.J. Keavney, R. Divan, and S.D. Bader: Magnetic vortex core dynamics in cylindrical ferromagnetic dots. Phys. Rev. Lett. 96, 067205 (2006).

  45. S. Seki, X.Z. Yu, S. Ishiwata, and Y. Tokura: Observation of skyrmions in a multiferroic material. Science 336, 198 (2012).

    CAS  Google Scholar 

  46. A. Schilling, D. Byrne, G. Catalan, K.G. Webber, Y.A. Genenko, G.S. Wu, J.F. Scott, and J.M. Gregg: Domains in ferroelectric nanodots. Nano Lett. 9, 3359 (2009).

    CAS  Google Scholar 

  47. A. Gruverman, D. Wu, H.J. Fan, I. Vrejoiu, M. Alexe, R.J. Harrison, and J.F. Scott: Vortex ferroelectric domains. J. Phys.—Condens. Mater. 20, 342201 (2008).

    Google Scholar 

  48. A.K. Yadav, C.T. Nelson, S.L. Hsu, Z. Hong, J.D. Clarkson, C.M. Schlepuetz, A.R. Damodaran, P. Shafer, E. Arenholz, L.R. Dedon, D. Chen, A. Vishwanath, A.M. Minor, L.Q. Chen, J.F. Scott, L.W. Martin, and R. Ramesh: Observation of polar vortices in oxide superlattices. Nature 530, 198 (2016).

    CAS  Google Scholar 

  49. I. Naumov and H. Fu: Vortex-to-polarization phase transformation path in ferroelectric Pb(ZrTi)O3 nanoparticles. Phys. Rev. Lett. 98, 077603 (2007).

    Google Scholar 

  50. Z. Wu, N. Huang, Z. Liu, J. Wu, W. Duan, and B.-L. Gu: Unusual vortex structure in ultrathin Pb(Zr0.5Ti0.5)O3 films. J. Appl. Phys. 101, 014112 (2007).

    Google Scholar 

  51. B.J. Rodriguez, X.S. Gao, L.F. Liu, W. Lee, I.I. Naumov, A.M. Bratkovsky, D. Hesse, and M. Alexe: Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127 (2009).

    CAS  Google Scholar 

  52. J. Li, J.-F. Li, Q. Yu, Q.N. Chen, and S. Xie: Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems. J. Materiomics 1, 3 (2015).

    Google Scholar 

  53. C.T. Nelson, B. Winchester, Y. Zhang, S.J. Kim, A. Melville, C. Adamo, C.M. Folkman, S.H. Baek, C.B. Eom, D.G. Schlom, L.Q. Chen, and X.Q. Pan: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828 (2011).

    CAS  Google Scholar 

  54. C.L. Jia, K.W. Urban, M. Alexe, D. Hesse, and I. Vrejoiu: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420 (2011).

    CAS  Google Scholar 

  55. L.J. McGilly, A. Schilling, and J.M. Gregg: Domain bundle boundaries in single crystal BaTiO3 lamellae: searching for naturally forming dipole flux-closure/quadrupole chains. Nano Lett. 10, 4200 (2010).

    CAS  Google Scholar 

  56. R.G.P. McQuaid, L.J. McGilly, P. Sharma, A. Gruverman, and J.M. Gregg: Mesoscale flux-closure domain formation in single-crystal BaTiO3. Nat. Commun. 2, 404 (2011).

    CAS  Google Scholar 

  57. Y.L. Tang, Y.L. Zhu, X.L. Ma, A.Y. Borisevich, A.N. Morozovska, E.A. Eliseev, W.Y. Wang, Y.J. Wang, Y.B. Xu, Z.D. Zhang, and S.J. Pennycook: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547 (2015).

    CAS  Google Scholar 

  58. Y.-H. Chu, L.W. Martin, M.B. Holcomb, and R. Ramesh: Controlling magnetism with multiferroics. Mater. Today 10, 16 (2007).

    CAS  Google Scholar 

  59. C.A.F. Vaz: Electric field control of magnetism in multiferroic heterostructures. J. Phys—Condens. Mater. 24, 33 (2012).

    Google Scholar 

  60. J.J. Wang, J.M. Hu, J. Ma, J.X. Zhang, L.Q. Chen, and C.W. Nan: Full 180 degrees magnetization reversal with electric fields. Sci. Rep. 6, 07507 (2016).

    Google Scholar 

  61. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, and R. Ramesh: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823 (2006).

    CAS  Google Scholar 

  62. Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, H. Shu Jen, H. Qing, N. Balke, Y. Chan Ho, D. Lee, H. Wei, Z. Qian, Y. Pei Ung, A.F. Rodriguez, A. Scholl, S.X. Wang, and R. Ramesh: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478 (2008).

    CAS  Google Scholar 

  63. J.T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S.Y. Yang, D.E. Nikonov, Y.H. Chu, S. Salahuddin, and R. Ramesh: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).

    CAS  Google Scholar 

  64. S.M. Wu, S.A. Cybart, P. Yu, M.D. Rossell, J.X. Zhang, R. Ramesh, and R.C. Dynes: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756 (2010).

    CAS  Google Scholar 

  65. S.M. Wu, S.A. Cybart, D. Yi, J.M. Parker, R. Ramesh, and R.C. Dynes: Full electric control of exchange bias. Phys. Rev. Lett. 110, 067202 (2013).

    CAS  Google Scholar 

  66. L.W. Martin, Y.-H. Chu, Q. Zhan, R. Ramesh, S.-J. Han, S.X. Wang, M. Warusawithana, and D.G. Schlom: Room temperature exchange bias and spin valves based on BiFeO3/SrRuO3/SrTiO3/Si (001) heterostructures. Appl. Phys. Lett. 91, 172513 (2007).

    Google Scholar 

  67. L.W. Martin, Y.-H. Chu, M.B. Holcomb, M. Huijben, P. Yu, S.-J. Han, D. Lee, S.X. Wang, and R. Ramesh: Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050 (2008).

    CAS  Google Scholar 

  68. J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando, E. Jacquet, C. Deranlot, M. Bibes, and A. Barthélémy: Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett. 12, 1141 (2012).

    CAS  Google Scholar 

  69. H. Bea, M. Bibes, F. Ott, B. Dupe, X.H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, and A. Barthelemy: Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 100, 017204 (2008).

    CAS  Google Scholar 

  70. F. Liu, Y. Zhou, Y.J. Wang, X.Y. Liu, J. Wang, and H. Guo: Negative capacitance transistors with monolayer black phosphorus. NPJ Quantum Mater. 1, 16004 (2016).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Science Foundation of China (Grant No. 51272078, 51431006), the Project for Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2014), Science and Technology Planning Project of Guangdong Province (Grant No. 2015B090927006), the Natural Science Foundation of Guangdong Province (Grant No. 2016A030308019), and the International Science & Technology Cooperation Platform Program of Guangzhou (Grant No. 2014J4500016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingsen Gao or Jun-Ming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Gao, X. & Liu, JM. Domain structures and magnetoelectric effects in multiferroic nanostructures. MRS Communications 6, 330–340 (2016). https://doi.org/10.1557/mrc.2016.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.39

Navigation