Skip to main content
Log in

Effect of the ligand in the crystal structure of zinc oxide: an x-ray powder diffraction, x-ray absorption near-edge structure, and an extended x-ray absorption fine structure study

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We analyze the effect of functionalization in the surface of zinc oxide crystal structure by 3-mercaptopropionic acid. X-ray powder diffraction data and extended x-ray absorption fine structure studies confirms a wurtzite structure. However, the morphology of the surface seems to be reduced and shows a film-like surface as demonstrated by x-ray absorption near edge structure and scanning electron microscopy. As a result of surface functionalization, the energy levels of the semiconductor were shifted toward reductive potentials (by 50 mV) as determined by diffuse reflectance and cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. P.R. Brawn, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi, J.C. Grossman, and V. Bulović: Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 5863 (2014).

    Article  Google Scholar 

  2. F.W. Wise: Lead salt quantum dots: the limit of strong quantum confinement. Ace. Chem. Res. 33, 773 (2000).

    Article  CAS  Google Scholar 

  3. X. Jiang, R.D. Schaller, S.B. Lee, J.M. Pietryga, V.I. Klimov, and A.A. Zakhidov: PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. J. Mater. Res. 22, 2204 (2007).

    Article  CAS  Google Scholar 

  4. J.J. Choi, Y.-F. Lim, M.E.B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A.C. Bartnik, A. Goedhart, G.G. Malliaras, H.D. Abruña, F.W. Wise, and T. Hanrath: PbSe nanocrystal excitonic solar cells. Nano Lett. 9, 3749 (2009).

    Article  CAS  Google Scholar 

  5. A. Fulati, S. Usman AN, M. Riaz, G. Amin, O. Nur, and M. Willander: Miniaturized pH sensors based on zinc oxide nanotubes/nanorods. Sensors 9, 8911 (2009).

    Article  CAS  Google Scholar 

  6. S.K. Hau, H.-L. Yip, N.S. Baek, J. Zou, K. O’Malley and A.K.-Y. Jen: Air-stable inverted flexible polymer solar cells using zinc oxide nanopar-ticles as an electron selective layer. Appl. Phys. Lett. 92, 253301 (2008).

    Article  Google Scholar 

  7. R. Niepelt, U.C. Schröder, J. Sommerfeld, I. Slowik, B. Rudolph, R. Moller, B. Seise, A. Csaki, W. Fritzsche, and C. Ronning: Biofunctionalization of zinc oxide nanowires for DNA sensory applications. Nanoscale Res. Lett. 6, 511 (2011).

    Article  Google Scholar 

  8. B. Zhang, T. Kong, W. Xu, R. Su, Y. Gao, and G. Cheng: Surface function-alization of zinc oxide by carboxyalkylphosphonic acid self-assembled monolayers. Langmuir 26, 4514 (2010).

    Article  CAS  Google Scholar 

  9. O. Voznyy, D. Zhitomirsky, P. Stadler, Z. Ning, S. Hoogland, and E.H. Sargent: A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano 6, 8448 (2012).

    Article  CAS  Google Scholar 

  10. S. Öztürk, N. Tasaltin, n Kilinç, and Z.Z. Öztürk: Fabrication of ZnO nano- tubes using AAO template and sol-gel method. J. Optoelectron. Biomed. Mater. 1, 15 (2009).

    Google Scholar 

  11. F. Dong, L. Licheng, X. Weilin, L. Guangzhong, L. Zhiping, Z. Yingsan, X. Jie, and X. Chuanxi: Hollow SnO2-ZnO hybrid nanofibers as anode materials for lithium-ion battery. Mater. Res. Express 1, 025012 (2014).

    Article  Google Scholar 

  12. A. Pang, C. Chen, L. Chen, W. Liu, and M. Wei: Flexible dye-sensitized ZnO quantum dots solar cells. RSC Adv. 2, 9565 (2012).

    Article  CAS  Google Scholar 

  13. A. Petrella, P. Cosma, M. Lucia Curri, S. Rochira, and A. Agostiano: Colloidal nanocrystal ZnO- and TiO2-modified electrodes sensitized with chlorophyll a and carotenoids: a photoelectrochemical study. JNanopart Res 13, 6467 (2011).

    Article  CAS  Google Scholar 

  14. R.N. Lokesh, L. Balakrishnan, K. Jeganathan, S. Layek, H.C. Verma, and N. Gopalakrishnan: Role of surface functionalization in ZnO:Fe nanostructures. Mater. Sci. Eng. B 183, 39 (2014).

    Article  CAS  Google Scholar 

  15. D.R. Roberts, R.G. Ford, and D.L. Sparks: Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy. J. Colloid Interface Sci. 263, 364 (2003).

    Article  CAS  Google Scholar 

  16. E.-S. Jeong, H.-J. Yu, S.-W. Han, S.J. An, J. Yoo, Y.-J. Kim, and G.-C. Yi: Local structural properties of ZnO nanoparticles, nanorods, and powder studied by extended x-ray absorption fine structure. J. Korean Phys. Soc. 53, 461 (2008).

    Article  CAS  Google Scholar 

  17. E.-S. Jeong, H.-J. Yu, Y.-J. Kim, G.-C. Yi, Y.-D. Choi, and S.-W. Han: Local structural and optical properties of ZnO nanoparticles. J. Nanosci. Nanotechnol. 10, 3562 (2010).

    Article  CAS  Google Scholar 

  18. J. ES, Y. HJ, S. Han, S. An, J. Yoo, Y. Kim, and G. Yi: Local structural properties of ZnO nanoparticles, nanorods and powder studied by extended x-ray absorption fine structure. J. Korean Phys. Soc. 53, 461 (2008).

    Article  Google Scholar 

  19. B. Ravel, and M. Newville: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for x-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537 (2005).

    Article  CAS  Google Scholar 

  20. P.M. Aneesh, K.A. Vanaja, and M.K. Jayaraj: Synthesis of ZnO nanoparticles by hydrothermal method. Proc. SPIE, Nanophotonic Materials IV, 6639, 66390J (2007).

    Article  Google Scholar 

  21. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, Oxford/New York, 1966).

    Google Scholar 

  22. X.G. Zhang: Electrochemistry of Zinc Oxide, in Corrosion and Electrochemistry of Zinc, (Springer, Boston, 1996), p. 93.

    Chapter  Google Scholar 

  23. Y. Liu, M.S. Liu, and A.K.-Y. Jen: Synthesis and characterization of a novel and highly efficient light-emitting polymer. Acta Polym. 50, 105 (1999).

    Article  CAS  Google Scholar 

  24. L. de la Cueva, K. Lauwaet, R. Otero, J.M. Gallego, C. Alonso, and B.H. Juarez: Effect of chloride ligands on CdSe nanocrystals by cyclic voltammetry and x-ray photoelectron spectroscopy. J. Phys. Chem. C 118, 4998 (2014).

    Article  Google Scholar 

  25. D. Liu, W. Wu, Y. Qiu, S. Yang, S. Xiao, Q.-Q. Wang, L. Ding, and J. Wang: Surface functionalization of ZnO nanotetrapods with photoactive and electroactive organic monolayers. Langmuir 24, 5052 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Dr. Victor M. Rodriguez from Universidad Metropolitana, Kenneth David Finkelstein, and Matthew James Ward from CHESS and Dr. Carlos R. Cabrera from the University of Puerto Rico for constructive discussion during the preparation of this manuscript. Financial support was possible due to PR REU: Research training in cross-disciplinary chemical sciences. NSF CHE 1262826.

Author information

Authors and Affiliations

Authors

Supplementary material

Supplementary material

The supplementary material for this article can be found at http://dx.doi.org/10.1557/mrc.2016.14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de los Cepeda-Perez, M.A., Reyes-Marte, C.M., Carrasquillo, V.A. et al. Effect of the ligand in the crystal structure of zinc oxide: an x-ray powder diffraction, x-ray absorption near-edge structure, and an extended x-ray absorption fine structure study. MRS Communications 6, 93–97 (2016). https://doi.org/10.1557/mrc.2016.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.14

Navigation