Skip to main content
Log in

Surface plasmon propagation on overcrossing metallic waveguides fabricated by a pick-and-place method

  • Plasmonics, Photonics, and Metamaterials Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Plasmonic waveguides can transport light while still confining it beyond the diffraction limit. Recently, crossing plasmonic waveguides have been suggested for the implementation of higher-density optical networks. However, suppressing undesirable scattering at their crossing point is still a challenging task because waveguides in these structures are physically connected. Here, we present an experimental demonstration of surface plasmon propagation on an overcrossing metallic waveguide fabricated by a pick-and-place method. By spatially separating the waveguides, the undesirable interaction at the interconnection can be suppressed. Our approach could be a powerful platform to achieve high-density integration of optical waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J. Takahara and T. Kobayashi: Low-dimensional optical waves and nano-optical circuits. Opt. Photonics News 15, 54–59 (2004).

    Article  Google Scholar 

  2. M.L. Brongersma, J.A. Schuller, J. White, Y.C. Jun, S.I. Bozhevolnyi, T. Sondergaard, and R. Zia: Nanoplasmonics: components, devices, and circuits. In Plasmonic Nanoguides and Circuits, edited by S. I. Bozhevolnyi (Pan Stanford Publishing, Singapore, 2009), 405–438.

    Google Scholar 

  3. W.L. Barnes, A. Dereux, and T.W. Ebbesen: Surface plasmon subwave-length optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  4. M.L. Brongersma and V.M. Shalaev: The case for plasmonics. Science 328, 440–441 (2010).

    Article  CAS  Google Scholar 

  5. M. Miyata and J. Takahara: Excitation control of long-range surface plas-mons by two incident beams. Opt. Express 20, 9493–9500 (2012).

    Article  Google Scholar 

  6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi: Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997).

    Article  CAS  Google Scholar 

  7. P. Berini: Plasmon-polariton modes guided by a metal film of finite width. Opt. Lett. 24, 1011–1013 (1999).

    Article  CAS  Google Scholar 

  8. G. Veronis and S. Fan: Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 30, 3359–3361 (2005).

    Article  Google Scholar 

  9. D.F.P. Pile and D.K. Gramotnev: Channel plasmon-polariton in a triangular groove on a metal surface. Opt. Lett. 29, 1069–1071 (2004).

    Article  CAS  Google Scholar 

  10. S. Xiao and N.A. Mortensen: Resonant-tunnelling-assisted crossing for subwavelength plasmonic slot waveguides. Opt. Express 16, 14997–15005 (2008).

    Article  Google Scholar 

  11. Y. Li, C. Xu, C. Zeng, W. Wang, J. Yang, H. Yu, and X. Jiang: Hybrid plasmonic waveguide crossing based on the multimode interference effect. Opt. Commun. 335, 86–89 (2015).

    Article  CAS  Google Scholar 

  12. M. Ota, M. Fukuhara, A. Sumimura, M. Ito, T. Aihara, Y. Ishii, and M. Fukuda: Dielectric-loaded surface plasmon polariton crossing waveguides using multimode interference. Opt. Lett. 40, 2269–2272 (2015).

    Article  CAS  Google Scholar 

  13. C. Manolatou, S.G. Johnson, S. Fan, P.R. Villeneuve, H.A. Haus, and J.D. Joannopoulos: High-density integrated optics. J. Lightw. Technol. 17, 1682–1692 (1999).

    Article  Google Scholar 

  14. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba: Low loss intersection of Si photonic wire waveguides. Jpn. J. Appl. Phys. 43, 646–647 (2004).

    Article  CAS  Google Scholar 

  15. N.C. Lindquist, T.W. Johnson, D.J. Norris, and S.-H. Oh: Monolithic integration of continuously tunable plasmonic nanostructures. Nano Lett. 11, 3526–3530 (2011).

    Article  CAS  Google Scholar 

  16. M. Miyata, A. Holsteen, Y. Nagasaki, M.L. Brongersma, and J. Takahara: Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate. Nano Lett. 15, 5609–5616 (2015).

    Article  CAS  Google Scholar 

  17. J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel: Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas. Appl. Phys. Lett. 98, 101109 (2011).

    Article  Google Scholar 

  18. P.B. Johnson and R.W. Christy: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

  19. E.D. Palik: Handbook of Optical Constants of Solids. Academic Press, New York (1998).

    Google Scholar 

  20. W.L. Barnes: Surface plasmon-polariton length scales: a route to subwavelength optics. J. Opt. A, Pure Appl. Opt. 8, S87–S93 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research B (no. 25286007) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). M. M. is supported by Research Fellowships of Japan Society for the Promotion of Science (JSPS) for Young Scientists. Y. N. is supported by Interactive Materials Science Cadet Program of Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Takahara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagasaki, Y., Miyata, M., Higuchi, M. et al. Surface plasmon propagation on overcrossing metallic waveguides fabricated by a pick-and-place method. MRS Communications 5, 587–591 (2015). https://doi.org/10.1557/mrc.2015.80

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.80

Navigation