Skip to main content
Log in

Novel one-pot synthesis of hierarchically porous Pd/C monoliths by a co-gelation method

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Described is a simple one-pot route for the synthesis of hierarchically porous carbon supported palladium (Pd/C) monoliths with a three-dimensional pore network via self-assembly under basic conditions of a resol polymer. Textural and morphological characterization of the Pd/C monoliths was carried out using nitrogen sorption analysis and scanning electron microscope. Formation of Pd nanoparticles ranging from 35 to 60 nm was observed. Evaluation of catalytic activity for styrene hydrogenation was performed using the Pd/C material as heterogeneous catalyst in batch mode. Studies revealed that the monoliths showed leaching and catalytic activity similar to a commercial Pd/C catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Table I
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. K.P. de Jong: Synthesis of Solid Catalysts (Wiley-VCH, Weinheim, Germany, 2009).

    Book  Google Scholar 

  2. Z.-Y. Yuan and B.-L. Su: Insights into hierarchically meso–macroporous structured materials. J. Mater. Chem. 16, 663 (2006).

    Article  CAS  Google Scholar 

  3. X.-Y. Yang, Y. Li, A. Lemaire, J.-G. Yu, and B.-L. Su: Hierarchically structured functional materials: synthesis strategies for multimodal porous networks. Pure Appl. Chem. 81, 2265 (2009).

    Article  CAS  Google Scholar 

  4. C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, and C. Sanchez: Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv. Mater. 23, 599 (2011).

    Article  CAS  Google Scholar 

  5. X.-Y. Yang, A. Leonard, A. Lemaire, G. Tian, and B.-L. Su: Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications. Chem. Commun. 47, 2763 (2011).

    Article  CAS  Google Scholar 

  6. C.M.A. Parlett, K. Wilson, and A.F. Lee: Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876 (2013).

    Article  CAS  Google Scholar 

  7. A. Oya, S. Yoshida, J. Alcaniz-Monge, and A. Linares-Solano: Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 33, 1085 (1995).

    Article  CAS  Google Scholar 

  8. T. Kyotani: Control of pore structure in carbon. Carbon 38, 269 (2000).

    Article  CAS  Google Scholar 

  9. J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, A. Oya, S. Yoshida, and T. Iizuka: Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 35, 1031 (1997).

    Article  CAS  Google Scholar 

  10. G.-P. Hao, W.-C. Li, S. Wang, G.-H. Wang, L. Qi, and A.-H. Lu: Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with a hexagonal array of mesopores. Carbon 49, 3762 (2011).

    Article  CAS  Google Scholar 

  11. J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose, and T.F. Baumann: Advanced carbon aerogels for energy applications. Energy Environ. Sci. 4, 656 (2011).

    Article  CAS  Google Scholar 

  12. C. Liang, Z. Li, and S. Dai: Mesoporous carbon materials: synthesis and modification. Angew. Chem.–Int. Ed. Engl. 20, 3696 (2008).

    Article  Google Scholar 

  13. Y. Xia, Z. Yang, and R. Mokaya: Templated nanoscale porous carbons. Nanoscale 2, 639 (2010).

    Article  CAS  Google Scholar 

  14. L. Chuenchom, R. Kraehnert, and B.M. Smarsly: Recent progress in soft-templating of porous carbon materials. Soft Matter 8, 10801 (2012).

    Article  CAS  Google Scholar 

  15. A.-H. Lu, J.-H. Smått, S. Backlund, and M. Lindén: Easy and flexible preparation of nanocasted carbon monoliths exhibiting a multimodal hierarchical porosity. Micropor. Mesopor. Mater. 72, 59 (2004).

    Article  CAS  Google Scholar 

  16. C. Liang and S. Dai: Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J. Am. Chem. Soc. 128, 5316 (2006).

    Article  CAS  Google Scholar 

  17. F. Zhang, Y. Meng, D. Gu, Y. Yan, C. Yu, B. Tu, and D. Zhao: A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. J. Am. Chem. Soc. 127, 13508 (2005).

    Article  CAS  Google Scholar 

  18. C. Liu, L. Li, H. Song, and X. Chen: Facile synthesis of ordered mesopo-rous carbons from F108/resorcinol–formaldehyde composites obtained in basic media. Chem. Commun. 757 (2007).

  19. Z. Sun, B. Sun, M. Qiao, J. Wei, Q. Yue, C. Wang, Y. Deng, S. Kaliaguine, and D. Zhao: A general chelate-assisted Co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for fischer-tropsch synthesis. J. Am. Chem. Soc. 134, 17653 (2012).

    Article  CAS  Google Scholar 

  20. Z. Li, J. Liu, Z. Huang, Y. Yang, C. Xia, and F. Li: One-pot synthesis of Pd nanoparticle catalysts supported on N-Doped carbon and application in the domino carbonylation. ACS Catal. 3, 839 (2013).

    Article  CAS  Google Scholar 

  21. X. Wang and S. Dai: A simple method to ordered mesoporous carbons containing nickel nanoparticles. Adsorption 15, 138 (2009).

    Article  CAS  Google Scholar 

  22. Y. Chi, J. Tu, M. Wang, X. Li, and Z. Zhao: One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol. J. Colloid Interface Sci. 423, 54 (2014).

    Article  CAS  Google Scholar 

  23. M. Stojmenovic, M. Momcilovic, N. Gavrilov, I.A. Pasti, S. Mentus, B. Jokic, and B. Babic: Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media. Electrochim. Acta 153, 130 (2015).

    Article  CAS  Google Scholar 

  24. G.-P. Hao, W.-C. Li, D. Qian, G.-H. Wang, W.-P. Zhang, T. Zhang, A.-Q. Wang, F. Schuth, H.-J. Bongard, and A.-H. Lu: Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J. Am. Chem. Soc. 133, 11378 (2011).

    Article  CAS  Google Scholar 

  25. S. Köcher, M. Lutz, A.L. Spek, B. Walfort, T. Rüffer, G.P.M. van Klink, G. van Koten, and H. Lang: Oxime-substituted NCN-pincer palladium and platinum halide polymers through non-covalent hydrogen bonding (NCN = [C6H2(CH2NMe2)2–2,6]-). J. Organometal. Chem. 693 (2008).

  26. A.V.G. Netto, R.C.G. Frem, and A.E. Mauro: Low-weight coordination polymers derived from the self-assembly reactions of Pd(II) pyrazolyl compounds and azide ion. Polyhedron 24, 1086 (2005).

    Article  CAS  Google Scholar 

  27. J.A.R. Navarro, E. Barea, J.M. Salas, N. Masciocchi, S. Galli, A. Sironi, C. O. Aniad, and J.B. Parra: Borderline microporous–ultramicroporous pal-ladium(II) coordination polymer networks. Effect of pore functionalisation on gas adsorption properties. J. Mater. Chem. 17, 1939 (2007).

    Article  CAS  Google Scholar 

  28. S. Zhang, Q. Liu, M. Shen, B. Hu, Q. Chen, H. Li, and J.-P. Amoureux: A facile route for preparing a mesoporous palladium coordination polymer as a recyclable heterogeneous catalyst. Dalton Trans. 41, 4692 (2012).

    Article  CAS  Google Scholar 

  29. J.M.J. Paulusse, J.P.J. Huijbers, and R.P. Sijbesma: Reversible, high molecular weight palladium and platinum coordination polymers based on phosphorus ligands. Macromolecules 38, 6290 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the CAF at the University of Alabama for support and technical assistance. TVK acknowledges the Research Simulation program for support. The authors wish to acknowledge the suggestion from one of the reviewers that a Pd coordination polymer was being formed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Bakker.

Electronic supplementary material

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotbagi, T.V., Hakat, Y. & Bakker, M.G. Novel one-pot synthesis of hierarchically porous Pd/C monoliths by a co-gelation method. MRS Communications 5, 51–56 (2015). https://doi.org/10.1557/mrc.2015.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.7

Navigation